

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

103

In this chapter we tackle a central topic in computer architecture: the language
understood by the computer’s hardware, referred to as its

machine language

.
The machine language is usually discussed in terms of its

assembly language

,
which is functionally equivalent to the corresponding machine language except
that the assembly language uses more intuitive names such as Move, Add, and
Jump instead of the actual binary words of the language. (Programmers find con-
structs such as “Add r0, r1, r2” to be more easily understood and rendered with-
out error than 0110101110101101.)

We begin by describing the

I

nstruction Set Architecture

(ISA) view of the
machine and its operations. The ISA view corresponds to the Assembly Lan-
guage/Machine Code level described in Figure 1-4: it is between the High Level
Language view, where little or none of the machine hardware is visible or of con-
cern, and the Control level, where machine instructions are interpreted as regis-
ter transfer actions, at the Functional Unit level.

In order to describe the nature of assembly language and assembly language pro-
gramming, we choose as a model architecture the

ARC

 machine, which is a sim-
plification of the commercial SPARC architecture common to Sun computers.
(Additional architectural models are covered in

The Computer Architecture Com-
panion

 volume.)

We illustrate the utility of the various instruction classes with practical examples
of assembly language programming, and we conclude with a Case Study of the
Java bytecodes as an example of a common, portable assembly language that can
be implemented using the native language of another machine.

MACHINE LANGUAGE AND
ASSEMBLY LANGUAGE

 4

104

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

4.1 Hardware Components of the Instruction Set Architecture

The ISA of a computer presents the assembly language programmer with a view
of the machine that includes all the programmer-accessible hardware, and the
instructions that manipulate data within the hardware. In this section we look at
the hardware components as viewed by the assembly language programmer. We
begin with a discussion of the system as a whole: the CPU interacting with its
internal (main) memory and performing input and output with the outside
world.

4.1.1

THE SYSTEM BUS MODEL REVISITED

Figure 4-1 revisits the system bus model that was introduced in Chapter 1.

The purpose of the bus is to reduce the number of interconnections between the
CPU and its subsystems. Rather than have separate communication paths
between memory and each I/O device, the CPU is interconnected with its mem-
ory and I/O systems via a shared

system bus

. In more complex systems there
may be separate busses between the CPU and memory and CPU and I/O.

Not all of the components are connected to the system bus in the same way. The
CPU generates addresses that are placed onto the address bus, and the memory
receives addresses from the address bus. The memory never generates addresses,
and the CPU never receives addresses, and so there are no corresponding connec-
tions in those directions.

In a typical scenario, a user writes a high level program, which a compiler trans-
lates into assembly language. An assembler then translates the assembly language

Sy
st

em
 B

us

Data Bus

Address Bus

Control Bus

(ALU,
Registers,

and Control)

Memory Input and
Output (I/O)

CPU

Figure 4-1 The system bus model of a computer system.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

105

program into machine code, which is stored on a disk. Prior to execution, the
machine code program is loaded from the disk into the main memory by an
operating system.

During program execution, each instruction is brought into the ALU from the
memory, one instruction at a time, along with any data that is needed to execute
the instruction. The output of the program is placed on a device such as a video
display, or a disk. All of these operations are orchestrated by a control unit, which
we will explore in detail in Chapter 6. Communication among the three compo-
nents (CPU, Memory, and I/O) is handled with busses.

An important consideration is that the instructions are executed inside of the
ALU, even though all of the instructions and data are initially stored in the mem-
ory. This means that instructions and data must be loaded from the memory into
the ALU registers, and results must be stored back to the memory from the ALU
registers.

4.1.2

MEMORY

Computer memory consists of a collection of consecutively numbered
(addressed) registers, each one of which normally holds one byte. A

byte

 is a col-
lection of eight bits (sometimes referred to by those in the computer communi-
cations community as an

octet

). Each register has an address, referred to as a

memory location

. A

nibble

, or

nybble

, as it is sometimes spelled, refers to a col-
lection of four adjacent bits. The meanings of the terms “bit,” “byte,” and “nib-
ble” are generally agreed upon regardless of the specifics of an architecture, but
the meaning of

word

 depends upon the particular processor. Typical word sizes
are 16, 32, 64, and 128 bits, with the 32-bit word size being the common form
for ordinary computers these days, and the 64-bit word growing in popularity. In
this text, words will be assumed to be 32-bits wide unless otherwise specified. A
comparison of these data types is shown in Figure 4-2.

In a byte-addressable machine, the smallest object that can be referenced in
memory is the byte, however, there are usually instructions that read and write
multi-byte words. Multi-byte words are stored as a sequence of bytes, addressed
by the byte of the word that has the lowest address. Most machines today have
instructions that can access bytes, half-words, words, and double-words.

When multi-byte words are used, there are two choices about the order in which
the bytes are stored in memory: most significant byte at lowest address, referred

106

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

to as

big-endian

, or least significant byte stored at lowest address, referred to as

little-endian

. The term “endian” comes from the issue of whether eggs should be
broken on the big or little end, which caused a war by bickering politicians in
Jonathan Swift’s

Gulliver’s Travels

. Examples of big and little-endian formats for a
4-byte, 32-bit word is illustrated in Figure 4-3.

Memory locations are arranged linearly in consecutive order as shown in Figure
4-3. Each of the numbered locations corresponds to a specific stored word (a
word is composed of four bytes here). The unique number that identifies each
word is referred to as its

address

. Since addresses are counted in sequence begin-
ning with zero, the highest address is one less than the size of the memory. The
highest address for a 2

32

 byte memory is 2

32

–1. The lowest address is 0.

The example memory that we will use for the remainder of the chapter is shown
in Figure 4-4. This memory has a 32-bit

address space

, which means that a pro-
gram can access a byte of memory anywhere in the range from 0 to 2

32

 – 1. The
address space for our example architecture is divided into distinct regions which
are used for the operating system, input and output (I/O), user programs, and
the system stack, which comprise the

memory map

, as shown in Figure 4-3. The

Bit

Nibble

Byte

16-bit word (halfword)

32-bit word

64-bit word (double)

0

0110

10110000

11001001 01000110

10110100 00110101 10011001 01011000

01011000 01010101 10110000 11110011
11001110 11101110 01111000 00110101

128-bit word (quad) 01011000 01010101 10110000 11110011
11001110 11101110 01111000 00110101
00001011 10100110 11110010 11100110
10100100 01000100 10100101 01010001

Figure 4-2 Common sizes for data types.

Big-Endian

x x+1 x+2 x+3

31 Little-Endian

x+3 x+2 x+1 x

0

Word address is x for both big-endian and little-endian formats.

0 31

Byte

← MSB LSB → ← MSB LSB →

Figure 4-3 Big-endian and little-endian formats.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

107

memory map differs from one implementation to another, which is partly why
programs compiled for the same type of processor may not be compatible across
systems.

The lower 2

11

 = 2048 addresses of the memory map are reserved for use by the
operating system. The user space is where a user’s assembled program is loaded,
and can grow during operation from location 2048 until it meets up with the
system stack. The system stack starts at location 2

31

 – 4 and grows toward lower
addresses. The portion of the address space between 2

31

 and 2

32

 – 1 is reserved
for I/O devices. The memory map is thus not entirely composed of real memory,
and in fact there may be large gaps where neither real memory nor I/O devices
exist. Since I/O devices are treated like memory locations, ordinary memory read
and write commands can be used for reading and writing devices. This is referred
to as

memory mapped I/O

.

It is important to keep the distinction clear between what is an address and what
is data. An address in this example memory is 32 bits wide, and a word is also 32
bits wide, but they are not the same thing. An address is a pointer to a memory
location, which holds data.

Reserved for
operating system

User Space

I/O space

0

2048

Stack pointer
System Stack

Top of stack

Bottom of stack

Disk
Terminal

Printer

232 – 4

231 – 4

32 bits

Address Data

232 – 1byte

MEMORY

Address Control

Data
Out

Data
In

Figure 4-4 A memory map for an example architecture (not drawn to scale).

108

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

In this chapter we assume that the computer’s memory is organized in a single
address space. The term

address space

 refers to the numerical range of memory
addresses to which the CPU can refer. In Chapter 7 (Memory), we will see that
there are other ways that memory can be organized, but for now, we assume that
memory as seen by the CPU has a single range of addresses. What decides the
size of that range? It is the size of a memory address that the CPU can place on
the address bus during read and write operations. A memory address that is

n

 bits
wide can specify one of 2

n

 items. This memory could be referred to as having an

n

-bit address space, or equivalently as having a (2

n

) byte address space. For exam-
ple, a machine having a 32-bit address space will have a maximum capacity of
2

32

 (4 GB) of memory. The memory addresses will range from 0 to 2

32

- 1, which
is 0 to 4,294,967,295 decimal, or in the easier to manipulate hexadecimal for-
mat, from 00000000H to FFFFFFFFFH. (The ‘H’ indicates a hexadecimal
number in many assembly languages.)

4.1.3

THE CPU

Now that we are familiar with the basic components of the system bus and mem-
ory, we are ready to explore the internals of the CPU. At a minimum, the CPU
consists of a

data section

 that contains registers and an ALU, and a

control sec-
tion

, which interprets instructions and effects register transfers, as illustrated in
Figure 4-5. The data section is also referred to as the

datapath

.

The control unit of a computer is responsible for executing the program instruc-
tions, which are stored in the main memory. (Here we will assume that the
machine code is interpreted by the control unit one instruction at a time, though
in Chapter 9 we shall see that many modern processors can process several

Control Unit

Control Section

Registers

ALU

Datapath
(Data Section)

System

Figure 4-5 High level view of a CPU.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

109

instructions simultaneously.) There are two registers that form the interface
between the control unit and the data unit, known as the

program counter

(PC)

†

 and the

instruction register

 (IR). The PC contains the address of the
instruction being executed. The instruction that is pointed to by the PC is
fetched from the memory, and is stored in the IR where it is interpreted. The
steps that the control unit carries out in executing a program are:

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.

3) Read operand(s) from main memory, if any.

4) Execute the instruction and store results.

5) Go to step 1.

This is known as the

fetch-execute cycle

.

The control unit is responsible for coordinating these different units in the exe-
cution of a computer program. It can be thought of as a form of a “computer
within a computer” in the sense that it makes decisions as to how the rest of the
machine behaves. We will treat the control unit in detail in Chapter 6.

The datapath is made up of a collection of registers known as the

register file

and the arithmetic and logic unit (ALU), as shown in Figure 4-6. The figure
depicts the datapath of an example processor we will use in the remainder of the
chapter.

The register file in the figure can be thought of as a small, fast memory, separate
from the system memory, which is used for temporary storage during computa-
tion. Typical sizes for a register file range from a few to a few thousand registers.
Like the system memory, each register in the register file is assigned an address in
sequence starting from zero. These register “addresses” are much smaller than
main memory addresses: a register file containing 32 registers would have only a
5-bit address, for example. The major differences between the register file and the
system memory is that the register file is contained within the CPU, and is there-
fore much faster. An instruction that operates on data from the register file can
often run ten times faster than the same instruction that operates on data in

† In Intel processors the program counter is called the instruction pointer, IP.

110

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

memory. For this reason, register-intensive programs are faster than the equiva-
lent memory intensive programs, even if it takes more register operations to do
the same tasks that would require fewer operations with the operands located in
memory.

Notice that there are several busses

inside

 the datapath of Figure 4-6. Three bus-
ses connect the datapath to the system bus. This allows data to be transferred to
and from main memory and the register file. Three additional busses connect the
register file to the ALU. These busses allow two operands to be fetched from the
register file simultaneously, which are operated on by the ALU, with the results
returned to the register file.

The ALU implements a variety of binary (two-operand) and unary (one-oper-
and) operations. Examples include add, and, not, or, and multiply. Operations
and operands to be used during the operations are selected by the Control Unit.
The two source operands are fetched from the register file onto busses labeled
“Register Source 1 (rs1)” and “Register Source 2 (rs2).” The output from the
ALU is placed on the bus labeled “Register Destination (rd),” where the results
are conveyed back to the register file. In most systems these connections also
include a path to the System Bus so that memory and devices can be accessed.
This is shown as the three connections labeled “From Data Bus”, “To Data Bus”,
and “To Address Bus.”

Register
File

ALU

From Data
Bus

To Data
Bus

To Address
Bus

Register
Source 1

(rs1)

Register
Source 2

(rs2)

Register Destination (rd)

Control Unit selects
registers and ALU

function

Status to Control
Unit

Figure 4-6 An example datapath.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

111

The Instruction Set

The

instruction set

 is the collection of instructions that a processor can execute,
and in effect, it defines the processor. The instruction sets for each processor type
are completely different one from the other. They differ in the sizes of instruc-
tions, the kind of operations they allow, the type of operands they operate on,
and the types of results they provide.This incompatibility in instruction sets is in
stark contrast to the compatibility of higher level languages such as C, Pascal,
and Ada. Programs written in these higher level languages can run almost
unchanged on many different processors if they are

re-compiled

 for the target
processor.

(One exception to this incompatibility of machine languages is programs com-
piled into Java bytecodes, which are a machine language for a

virtual machine

.
They will run unchanged on any processor that is running the Java Virtual
Machine. The Java Virtual Machine, written in the assembly language of the tar-
get machine, intercepts each Java byte code and executes it as if it were running
on a Java hardware (“real”) machine. See the Case Study at the end of the chapter
for more details.)

Because of this incompatibility among instruction sets, computer systems are
often identified by the type of CPU that is incorporated into the computer sys-
tem. The instruction set determines the programs the system can execute and has
a significant impact on performance. Programs compiled for an IBM PC (or
compatible) system use the instruction set of an 80x86 CPU, where the ‘x’ is
replaced with a digit that corresponds to the version, such as 80586, more com-
monly referred to as a Pentium processor. These programs will not run on an
Apple Macintosh or an IBM RS6000 computer, since the Macintosh and IBM
machines execute the instruction set of the Motorola

PowerPC

 CPU. This does
not mean that all computer systems that use the same CPU can execute the same
programs, however. A PowerPC program written for the IBM RS6000 will not
execute on the Macintosh without extensive modifications, however, because of
differences in operating systems and I/O conventions.

We will cover one instruction set in detail later in the chapter.

Software for generating machine language programs

A

compiler

 is a computer program that transforms programs written in a
high-level language such as C, Pascal, or Fortran into machine language. Com-

112

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

pilers for the same high level language generally have the same “front end,” the
part that recognizes statements in the high-level language. They will have differ-
ent “back ends,” however, one for each target processor. The compiler’s back end
is responsible for generating machine code for a specific target processor. On the
other hand, the same program, compiled by different C compilers for the

same

machine can produce different compiled programs for the same source code, as
we will see.

In the process of compiling a program (referred to as the

translation process

), a
high-level source program is transformed into

assembly language

, and the
assembly language is then translated into machine code for the target machine by
an

assembler

. These translations take place at

compile time

 and

assembly time

,
respectively. The resulting object program can be linked with other object pro-
grams, at

link time

. The linked program, usually stored on a disk, is loaded into
main memory, at

load time

, and executed by the CPU, at

run time

.

Although most code is written in high level languages, programmers may use
assembly language for programs or fragments of programs that are time or
space-critical. In addition, compilers may not be available for some special pur-
pose processors, or their compilers may be inadequate to express the special oper-
ations which are required. In these cases also, the programmer may need to resort
to programming in assembly language.

High level languages allow us to ignore the target computer architecture during
coding. At the machine language level, however, the underlying architecture is
the primary consideration. A program written in a high level language like C,
Pascal, or Fortran may look the same and execute correctly after compilation on
several different computer systems. The object code that the compiler produces
for each machine, however, will be very different for each computer system, even
if the systems use the same instruction set, such as programs compiled for the
PowerPC but running on a Macintosh vs. running on an IBM RS6000.

Having discussed the system bus, main memory, and the CPU, we now examine
details of a model instruction set, the ARC.

4.2 ARC, A RISC Computer

In the remainder of this chapter, we will study a model architecture that is based
on the commercial Scalable Processor Architecture (

SPARC

) processor that was
developed at Sun Microsystems in the mid-1980’s. The SPARC has become a

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

113

popular architecture since its introduction, which is partly due to its “open”
nature: the full definition of the SPARC architecture is made readily available to
the public (SPARC, 1992). In this chapter, we will look at just a subset of the
SPARC, which we call “A RISC Computer” (

ARC

). “RISC” is yet another acro-
nym, for

reduced instruction set computer

, which is discussed in Chapter 9. The
ARC has most of the important features of the SPARC architecture, but without
some of the more complex features that are present in a commercial processor.

4.2.1

ARC MEMORY

The ARC is a 32-bit machine with byte-addressable memory: it can manipulate
32-bit data types, but all data is stored in memory as bytes, and the address of a
32-bit word is the address of its byte that has the lowest address. As described
earlier in the chapter in the context of Figure 4-4, the ARC has a 32-bit address
space, in which our example architecture is divided into distinct regions for use
by the operating system code, user program code, the system stack (used to store
temporary data), and input and output, (I/O). These memory regions are
detailed as follows:

• The lowest 2

11

 = 2048 addresses of the memory map are reserved for use
by the operating system.

• The user space is where a user’s assembled program is loaded, and can grow
during operation from location 2048 until it meets up with the system
stack.

• The system stack starts at location 2

31

 – 4 and grows toward lower address-
es. The reason for this organization of programs growing upward in mem-
ory and the system stack growing downward can be seen in Figure 4-4: it
accommodates both large programs with small stacks and small programs
with large stacks.

• The portion of the address space between 2

31

 and 2

32

 – 1 is reserved for
I/O devices—each device has a collection of memory addresses where its
data is stored, which is referred to as “memory mapped I/O.”

The ARC has several data types (byte, halfword, integer,

etc.

), but for now we
will consider only the 32-bit integer data type. Each integer is stored in memory
as a collection of four bytes. ARC is a

big-endian

 architecture, so the high-
est-order byte is stored at the lowest address. The largest possible byte address in
the ARC is 2

32

 – 1, so the address of the highest word in the memory map is

114

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

three bytes lower than this, or 2

32

 – 4.

4.2.2

ARC INSTRUCTION SET

As we get into details of the ARC instruction set, let us start by making an over-
view of the CPU:

• The ARC has 32 32-bit general-purpose registers, as well as a PC and an IR.

• There is a

Processor Status Register

 (PSR) that contains information about
the state of the processor, including information about the results of arith-
metic operations. The “arithmetic flags” in the PSR are called the

condition
codes

. They specify whether a specified arithmetic operation resulted in a
zero value (

z), a negative value (n), a carry out from the 32-bit ALU (c),
and an overflow (v). The v bit is set when the results of the arithmetic op-
eration are too large to be handled by the ALU.

• All instructions are one word (32-bits) in size.

• The ARC is a load-store machine: the only allowable memory access oper-
ations load a value into one of the registers, or store a value contained in
one of the registers into a memory location. All arithmetic operations op-
erate on values that are contained in registers, and the results are placed in
a register. There are approximately 200 instructions in the SPARC instruc-
tion set, upon which the ARC instruction set is based. A subset of 15 in-
structions is shown in Figure 4-7. Each instruction is represented by a
mnemonic, which is a name that represents the instruction.

Data Movement Instructions

The first two instructions: ld (load) and st (store) transfer a word between the
main memory and one of the ARC registers. These are the only instructions that
can access memory in the ARC.

The sethi instruction sets the 22 most significant bits (MSBs) of a register with
a 22-bit constant contained within the instruction. It is commonly used for con-
structing an arbitrary 32-bit constant in a register, in conjunction with another
instruction that sets the low-order 10 bits of the register.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 115

Arithmetic and Logic Instructions

The andcc, orcc, and orncc instructions perform a bit-by-bit AND, OR, and
NOR operation, respectively, on their operands. One of the two source operands
must be in a register. The other may either be in a register, or it may be a 13-bit
two’s complement constant contained in the instruction, which is sign extended
to 32-bits when it is used. The result is stored in a register.

For the andcc instruction, each bit of the result is set to 1 if the corresponding
bits of both operands are 1, otherwise the result bit is set to 0. For the orcc
instruction, each bit of the register is 1 if either or both of the corresponding
source operand bits are 1, otherwise the corresponding result bit is set to 0. The
orncc operation is the complement of orcc, so each bit of the result is 0 if
either or both of the corresponding operand bits are 1, otherwise the result bit is
set to 1. The “cc” suffixes specify that after performing the operation, the condi-
tion code bits in the PSR are updated to reflect the results of the operation. In
particular, the z bit is set if the result register contains all zeros, the n bit is set if
the most significant bit of the result register is a 1, and the c and v flags are
cleared for these particular instructions. (Why?)

The shift instructions shift the contents of one register into another. The srl
(shift right logical) instruction shifts a register to the right, and copies zeros into

ld Load a register from memory

Mnemonic Meaning

st

sethi

andcc

addcc

call

jmpl

be

orcc

orncc

Store a register into memory

Load the 22 most significant bits of a register

Bitwise logical AND

Add

Branch on overflow

Call subroutine

Jump and link (return from subroutine call)

Branch if equal

Bitwise logical OR

Bitwise logical NOR

bneg

bcs

Branch if negative

Branch on carry

srl Shift right (logical)

bvs

ba Branch always

Memory

Logic

Arithmetic

Control

Figure 4-7 A subset of the instruction set for the ARC ISA.

116 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

the leftmost bit(s). The sra (shift right arithmetic) instruction (not shown),
shifts the original register contents to the right, placing a copy of the MSB of the
original register into the newly created vacant bit(s) in the left side of the register.
This results in sign-extending the number, thus preserving its arithmetic sign.

The addcc instruction performs a 32-bit two’s complement addition on its
operands.

Control Instructions

The call and jmpl instructions form a pair that are used in calling and return-
ing from a subroutine, respectively. jmpl is also used to transfer control to
another part of the program.

The lower five instructions are called conditional branch instructions. The be,
bneg, bcs, bvs, and ba instructions cause a branch in the execution of a pro-
gram. They are called conditional because they test one or more of the condition
code bits in the PSR, and branch if the bits indicate the condition is met. They
are used in implementing high level constructs such as goto, if-then-else
and do-while. Detailed descriptions of these instructions and examples of their
usages are given in the sections that follow.

4.2.3 ARC ASSEMBLY LANGUAGE FORMAT

Each assembly language has its own syntax. We will follow the SPARC assembly
language syntax, as shown in Figure 4-8. The format consists of four fields: an

optional label field, an opcode field, one or more fields specifying the source and
destination operands (if there are operands), and an optional comment field. A
label consists of any combination of alphabetic or numeric characters, under-
scores (_), dollar signs ($), or periods (.), as long as the first character is not a
digit. A label must be followed by a colon. The language is sensitive to case, and
so a distinction is made between upper and lower case letters. The language is
“free format” in the sense that any field can begin in any column, but the relative

lab_1: addcc %r1, %r2, %r3 ! Sample assembly code

Label Mnemonic
Source

operands Comment
Destination

operand

Figure 4-8 Format for a SPARC (as well as ARC) assembly language statement.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 117

left-to-right ordering must be maintained.

The ARC architecture contains 32 registers labeled %r0 – %r31, that each hold
a 32-bit word. There is also a 32-bit Processor State Register (PSR) that describes
the current state of the processor, and a 32-bit program counter (PC), that
keeps track of the instruction being executed, as illustrated in Figure 4-9. The

PSR is labeled %psr and the PC register is labeled %pc. Register %r0 always
contains the value 0, which cannot be changed. Registers %r14 and %r15 have
additional uses as a stack pointer (%sp) and a link register, respectively, as
described later.

Operands in an assembly language statement are separated by commas, and the
destination operand always appears in the rightmost position in the operand
field. Thus, the example shown in Figure 4-8 specifies adding registers %r1 and
%r2, with the result placed in %r3. If %r0 appears in the destination operand
field instead of %r3, the result is discarded. The default base for a numeric oper-
and is 10, so the assembly language statement:

addcc %r1, 12, %r3

shows an operand of (12)10 that will be added to %r1, with the result placed in
%r3. Numbers are interpreted in base 10 unless preceeded by “0x” or ending in
“H”, either of which denotes a hexadecimal number. The comment field follows

Register 00 %r0 [= 0]

Register 01 %r1

Register 02 %r2

Register 03 %r3

Register 04 %r4

Register 05 %r5

Register 06 %r6

Register 07 %r7

Register 08 %r8

PSR %psr PC %pc

Register 09 %r9

Register 10 %r10

Register 11 %r11

Register 12 %r12

Register 13 %r13

Register14 %r14 [%sp]

Register 15 %r15 [link]

32 bits 32 bits

Register 16 %r16

Register 17 %r17

Register 18 %r18

Register 19 %r19

Register 20 %r20

Register 21 %r21

Register 22 %r22

Register 23 %r23

Register 24 %r24

Register 25 %r25

Register 26 %r26

Register 27 %r27

Register 28 %r28

Register 29 %r29

Register 30 %r30

Register 31 %r31

Figure 4-9 User-visible registers in the ARC.

118 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

the operand field, and begins with an exclamation mark ‘!’ and terminates at the
end of the line.

4.2.4 ARC INSTRUCTION FORMATS

The instruction format defines how the various bit fields of an instruction are
laid out by the assembler, and how they are interpreted by the ARC control unit.
The ARC architecture has just a few instruction formats. The five formats are:
SETHI, Branch, Call, Arithmetic, and Memory, as shown in Figure 4-10. Each

instruction has a mnemonic form such as “ld,” and an opcode. A particular
instruction format may have more than one opcode field, which collectively
identify an instruction in one of its various forms.

op3 (op=10)

010000
010001
010010
010110
100110
111000

addcc
andcc
orcc
orncc
srl
jmpl

0001
0101
0110
0111
1000

cond

be
bcs
bneg
bvs
ba

branch

010
100

op2

branch
sethi

Inst.

00
01
10
11

op

SETHI/Branch
CALL
Arithmetic
Memory

Format

000000
000100

ld
st

op3 (op=11)

op

CALL format disp30

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 1

SETHI Format imm22

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rd

disp220 cond

0 0

0 0Branch Format

op2

op2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

1

Memory Formats
1

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

Arithmetic
Formats

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

0

0

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

i

PSR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

z v cn

Figure 4-10 Instruction formats and PSR format for the ARC.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 119

The leftmost two bits of each instruction form the op (opcode) field, which
identifies the format. The SETHI and Branch formats both contain 00 in the op
field, and so they can be considered together as the SETHI/Branch format. The
actual SETHI or Branch format is determined by the bit pattern in the op2
opcode field (010 = Branch; 100 = SETHI). Bit 29 in the Branch format always
contains a zero. The five-bit rd field identifies the target register for the SETHI
operation.

The cond field identifies the type of branch, based on the condition code bits (n,
z, v, and c) in the PSR, as indicated at the bottom of Figure 4-10. The result of
executing an instruction in which the mnemonic ends with “cc” sets the condi-
tion code bits such that n=1 if the result of the operation is negative; z=1 if the
result is zero; v=1 if the operation causes an overflow; and c=1 if the operation
produces a carry. The instructions that do not end in “cc” do not affect the con-
dition codes. The imm22 and disp22 fields each hold a 22-bit constant that is
used as the operand for the SETHI format (for imm22) or for calculating a dis-
placement for a branch address (for disp22).

The CALL format contains only two fields: the op field, which contains the bit
pattern 01, and the disp30 field, which contains a 30-bit displacement that is
used in calculating the address of the called routine.

The Arithmetic (op = 10) and Memory (op = 11) formats both make use of
rd fields to identify either a source register for st, or a destination register for
the remaining instructions. The rs1 field identifies the first source register, and
the rs2 field identifies the second source register. The op3 opcode field identi-
fies the instruction according to the op3 tables shown in Figure 4-10.

The simm13 field is a 13-bit immediate value that is sign extended to 32 bits for
the second source when the i (immediate) field is 1. The meaning of “sign
extended” is that the leftmost bit of the simm13 field (the sign bit) is copied to
the left into the remaining bits that make up a 32-bit integer, before adding it to
rs1 in this case. This ensures that a two’s complement negative number remains
negative (and a two’s complement positive number remains positive). For
instance, (−13)10 = (1111111110011)2, and after sign extension to a 32-bit inte-
ger, we have (11111111111111111111111111110011)2 which is still equivalent
to (−13)10.

The Arithmetic instructions need two source operands and a destination oper-
and, for a total of three operands. The Memory instructions only need two oper-

120 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

ands: one for the address and one for the data. The remaining source operand is
also used for the address, however. The operands in the rs1 and rs2 fields are
added to obtain the address when i = 0. When i = 1, then the rs1 field and
the simm13 field are added to obtain the address. For the first few examples we
will encounter, %r0 will be used for rs2 and so only the remaining source oper-
and will be specified.

4.2.5 ARC DATA FORMATS

The ARC supports 12 different data formats as illustrated in Figure 4-11. The
data formats are grouped into three types: signed integer, unsigned integer, and
floating point. Within these types, allowable format widths are byte (8 bits), half-
word (16 bits), word/singleword (32 bits), tagged word (32 bits, in which the
two least significant bits form a tag and the most significant 30 bits form the
value), doubleword (64 bits), and quadword (128 bits).

In reality, the ARC does not differentiate between unsigned and signed integers.
Both are stored and manipulated as two’s complement integers. It is their inter-
pretation that varies. In particular one subset of the branch instructions assumes
that the value(s) being compared are signed integers, while the other subset
assumes they are unsigned. Likewise, the c bit indicates unsigned integer over-
flow, and the v bit, signed overflow.

The tagged word uses the two least significant bits to indicate overflow, in which
an attempt is made to store a value that is larger than 30 bits into the allocated
30 bits of the 32-bit word. Tagged arithmetic operations are used in languages
with dynamically typed data, such as Lisp and Smalltalk. In its generic form, a 1
in either bit of the tag field indicates an overflow situation for that word. The
tags can be used to ensure proper alignment conditions (that words begin on
four-byte boundaries, quadwords begin on eight-byte boundaries, etc.), particu-
larly for pointers.

The floating point formats conform to the IEEE 754-1985 standard (see Chap-
ter 2). There are special instructions that invoke the floating point formats that
are not described here, that can be found in (SPARC, 1992).

4.2.6 ARC INSTRUCTION DESCRIPTIONS

Now that we know the instruction formats, we can create detailed descriptions of
the 15 instructions listed in Figure 4-7, which are given below. The translation to

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 121

object code is provided only as a reference, and is described in detail in the next
chapter. In the descriptions below, a reference to the contents of a memory loca-
tion (for ld and st) is indicated by square brackets, as in “ld [x], %r1”
which copies the contents of location x into %r1. A reference to the address of a
memory location is specified directly, without brackets, as in “call sub_r,”
which makes a call to subroutine sub_r. Only ld and st can access memory,
therefore only ld and st use brackets. Registers are always referred to in terms of
their contents, and never in terms of an address, and so there is no need to
enclose references to registers in brackets.

Signed Integer Byte s
7 6 0

Signed Integer Halfword s
15 14 0

Signed Integer Word s
31 30 0

Signed Integer Double s
63 62 32

31 0

Signed Formats

Unsigned Integer Byte
7 0

Unsigned Integer Halfword
15 0

Unsigned Integer Word
31 0

Unsigned Integer Double
63 32

31 0

Unsigned Formats

Floating Point Single

Floating Point Double

Floating Point Quad

31 0

s
127 126 96

95 64

Floating Point Formats

Tagged Word
31 0

Tag

12

s
31 30 0

exponent fraction
23 22

s
63 62 32

exponent fraction

fraction

63 32

31 0

exponent fraction

52 51

113112

fraction

fraction

fraction

Figure 4-11 ARC data formats.

122 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

Instruction: ld
Description: Load a register from main memory. The memory address must be aligned
on a word boundary (that is, the address must be evenly divisible by 4). The address is
computed by adding the contents of the register in the rs1 field to either the contents of
the register in the rs2 field or the value in the simm13 field, as appropriate for the con-
text.
Example usage: ld [x], %r1

or ld [x], %r0, %r1
or ld %r0+x, %r1

Meaning: Copy the contents of memory location x into register %r1.
Object code: 11000010000000000010100000010000 (x = 2064)

Instruction: st
Description: Store a register into main memory. The memory address must be aligned
on a word boundary. The address is computed by adding the contents of the register in
the rs1 field to either the contents of the register in the rs2 field or the value in the
simm13 field, as appropriate for the context. The rd field of this instruction is actually
used for the source register.
Example usage: st %r1, [x]
Meaning: Copy the contents of register %r1 into memory location x.
Object code: 11000010001000000010100000010000 (x = 2064)

Instruction: sethi
Description: Set the high 22 bits and zero the low 10 bits of a register. If the operand is
0 and the register is %r0, then the instruction behaves as a no-op (NOP), which means
that no operation takes place.
Example usage: sethi 0x304F15, %r1
Meaning: Set the high 22 bits of %r1 to (304F15)16, and set the low 10 bits to zero.
Object code: 00000011001100000100111100010101

Instruction: andcc
Description: Bitwise AND the source operands into the destination operand. The con-
dition codes are set according to the result.
Example usage: andcc %r1, %r2, %r3
Meaning: Logically AND %r1 and %r2 and place the result in %r3.
Object code: 10000110100010000100000000000010

Instruction: orcc
Description: Bitwise OR the source operands into the destination operand. The condi-
tion codes are set according to the result.
Example usage: orcc %r1, 1, %r1
Meaning: Set the least significant bit of %r1 to 1.
Object code: 10000010100100000110000000000001

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 123

Instruction: orncc
Description: Bitwise NOR the source operands into the destination operand. The con-
dition codes are set according to the result.
Example usage: orncc %r1, %r0, %r1
Meaning: Complement %r1.
Object code: 10000010101100000100000000000000

Instruction: srl
Description: Shift a register to the right by 0 – 31 bits. The vacant bit positions in the
left side of the shifted register are filled with 0’s.
Example usage: srl %r1, 3, %r2
Meaning: Shift %r1 right by three bits and store in %r2. Zeros are copied into the three
most significant bits of %r2.
Object code: 10000101001100000110000000000011

Instruction: addcc
Description: Add the source operands into the destination operand using two’s comple-
ment arithmetic. The condition codes are set according to the result.
Example usage: addcc %r1, 5, %r1
Meaning: Add 5 to %r1.
Object code: 10000010100000000110000000000101

Instruction: call
Description: Call a subroutine and store the address of the current instruction (where
the call itself is stored) in %r15, which effects a “call and link” operation. In the assem-
bled code, the disp30 field in the CALL format will contain a 30-bit displacement
from the address of the call instruction. The address of the next instruction to be exe-
cuted is computed by adding 4 × disp30 (which shifts disp30 to the high 30 bits of
the 32-bit address) to the address of the current instruction. Note that disp30 can be
negative.
Example usage: call sub_r
Meaning: Call a subroutine that begins at location sub_r. For the object code shown
below, sub_r is 25 words (100 bytes) farther in memory than the call instruction.
Object code: 01000000000000000000000000011001

Instruction: jmpl
Description: Jump and link (return from subroutine). Jump to a new address and store
the address of the current instruction (where the jmpl instruction is located) in the des-
tination register.
Example usage: jmpl %r15 + 4, %r0
Meaning: Return from subroutine. The value of the PC for the call instruction was pre-
viously saved in %r15, and so the return address should be computed for the instruction
that follows the call, at %r15 + 4. The current address is discarded in %r0.
Object code: 10000001110000111110000000000100

124 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

Instruction: be
Description: If the z condition code is 1, then branch to the address computed by add-
ing 4 × disp22 in the Branch instruction format to the address of the current instruc-
tion. If the z condition code is 0, then control is transferred to the instruction that
follows be.
Example usage: be label
Meaning: Branch to label if the z condition code is 1. For the object code shown
below, label is five words (20 bytes) farther in memory than the be instruction.
Object code: 00000010100000000000000000000101

Instruction: bneg
Description: If the n condition code is 1, then branch to the address computed by add-
ing 4 × disp22 in the Branch instruction format to the address of the current instruc-
tion. If the n condition code is 0, then control is transferred to the instruction that
follows bneg.
Example usage: bneg label
Meaning: Branch to label if the n condition code is 1. For the object code shown
below, label is five words farther in memory than the bneg instruction.
Object code: 00001100100000000000000000000101

Instruction: bcs
Description: If the c condition code is 1, then branch to the address computed by add-
ing 4 × disp22 in the Branch instruction format to the address of the current instruc-
tion. If the c condition code is 0, then control is transferred to the instruction that
follows bcs.
Example usage: bcs label
Meaning: Branch to label if the c condition code is 1. For the object code shown
below, label is five words farther in memory than the bcs instruction.
Object code: 00001010100000000000000000000101

Instruction: bvs
Description: If the v condition code is 1, then branch to the address computed by add-
ing 4 × disp22 in the Branch instruction format to the address of the current instruc-
tion. If the v condition code is 0, then control is transferred to the instruction that
follows bvs.
Example usage: bvs label
Meaning: Branch to label if the v condition code is 1. For the object code shown
below, label is five words farther in memory than the bvs instruction.
Object code: 00001110100000000000000000000101

Instruction: ba
Description: Branch to the address computed by adding 4 × disp22 in the Branch
instruction format to the address of the current instruction.
Example usage: ba label

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 125

Meaning: Branch to label regardless of the settings of the condition codes. For the
object code shown below, label is five words earlier in memory than the ba instruc-
tion.
Object code: 00010000101111111111111111111011

4.3 Pseudo-Ops
In addition to the ARC instructions that are supported by the architecture, there
are also pseudo-operations (pseudo-ops) that are not opcodes at all, but rather
instructions to the assembler to perform some action at assembly time. A list of
pseudo-ops and examples of their usages are shown in Figure 4-12. Note that

unlike processor opcodes, which are specific to a given machine, the kind and
nature of the pseudo-ops are specific to a given assembler, because they are exe-
cuted by the assembler itself.

The .equ pseudo-op instructs the assembler to equate a value or a character
string with a symbol, so that the symbol can be used throughout a program as if
the value or string is written in its place. The .begin and .end pseudo-ops tell
the assembler when to start and stop assembling. Any statements that appear
before .begin or after .end are ignored. A single program may have more than
one .begin/.end pair, but there must be a .end for every .begin, and there
must be at least one .begin. The use of .begin and .end are helpful in mak-
ing portions of the program invisible to the assembler during debugging.

Pseudo-Op Usage Meaning

.equ .equ #10 Treat symbol X as (10)16

.begin .begin Start assembling

.end .end Stop assembling

.org .org 2048 Change location counter to 2048

.dwb .dwb 25 Reserve a block of 25 words

X

.global .global Y Y is used in another module

.extern .extern Z Z is defined in another module

.macro .macro M a, b, ...

parameters a, b, ...

.endmacro .endmacro End of macro definition

.if .if <cond> Assemble if <cond> is true

.endif .endif End of .if construct

Define macro M with formal

Figure 4-12 Pseudo-ops for the ARC assembly language.

126 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

The .org (origin) pseudo-op causes the next instruction to be assembled with
the assumption it will be placed in the specified memory location at runtime
(location 2048 in Figure 4-12.) The .dwb (define word block) pseudo-op
reserves a block of four-byte words, typically for an array. The location counter
(which keeps track of which instruction is being assembled by the assembler) is
moved ahead of the block according to the number of words specified by the
argument to .dwb multiplied by 4.

The .global and .extern pseudo-ops deal with names of variables and
addresses that are defined in one assembly code module and are used in another.
The .global pseudo-op makes a label available for use in other modules. The
.extern pseudo-op identifies a label that is used in the local module and is
defined in another module (which should be marked with a .global in that
module). We will see how .global and .extern are used when linking and
loading are covered in the next chapter. The .macro, .endmacro, .if, and
.endif pseudo-ops are also covered in the next chapter.

4.4 Examples of Assembly Language Programs
The process of writing an assembly language program is similar to the process of
writing a high-level program, except that many of the details that are abstracted
away in high-level programs are made explicit in assembly language programs. In
this section, we take a look at two examples of ARC assembly language programs.

Program: Add Two Integers.

Consider writing an ARC assembly language program that adds the integers 15
and 9. One possible coding is shown in Figure 4-13. The program begins and

! This programs adds two numbers

.org 2048
ld [x], %r1 ! Load x into %r1
ld [y], %r2 ! Load y into %r2
addcc %r1, %r2, %r3 ! %r3 ← %r1 + %r2

jmpl %r15 + 4, %r0 ! Return
x: 15
y: 9

.end

.begin

prog1:

z: 0

st %r3, [z] ! Store %r3 into z

Figure 4-13 An ARC assembly language program adds two integers.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 127

ends with a .begin/.end pair. The .org pseudo-op instructs the assembler to
begin assembling so that the assembled code is loaded into memory starting at
location 2048. The operands 15 and 9 are stored in variables x and y, respec-
tively. We can only add numbers that are stored in registers in the ARC (because
only ld and st can access main memory), and so the program begins by loading
registers %r1 and %r2 with x and y. The addcc instruction adds %r1 and %r2
and places the result in %r3. The st instruction then stores %r3 in memory
location z. The jmpl instruction with operands %r15 + 4, %r0 causes a
return to the next instruction in the calling routine, which is the operating sys-
tem if this is the highest level of a user’s program as we can assume it is here. The
variables x, y, and z follow the program.

In practice, the SPARC code equivalent to the ARC code shown in Figure 4-13 is
not entirely correct. The ld, st, and jmpl instructions all take at least two
instruction cycles to complete, and since SPARC begins a new instruction at
each clock tick, these instructions need to be followed by an instruction that does
not rely on their results. This property of launching a new instruction before the
previous one has completed is called pipelining, and is covered in more detail in
Chapter 9.

Program: Sum an Array of Integers

Now consider a more complex program that sums an array of integers. One pos-
sible coding is shown in Figure 4-14. As in the previous example, the program
begins and ends with a .begin/.end pair. The .org pseudo-op instructs the
assembler to begin assembling so that the assembled code is loaded into memory
starting at location 2048. A pseudo-operand is created for the symbol a_start
which is assigned a value of 3000.

The program begins by loading the length of array a, which is given in bytes,
into %r1. The program then loads the starting address of array a into %r2, and
clears %r3 which will hold the partial sum. Register %r3 is cleared by ANDing it
with %r0, which always holds the value 0. Register %r0 can be ANDed with any
register for that matter, and the result will still be zero.

The label loop begins a loop that adds successive elements of array a into the
partial sum (%r3) on each iteration. The loop starts by checking if the number of
remaining array elements to sum (%r1) is zero. It does this by ANDing %r1 with
itself, which has the side effect of setting the condition codes. We are interested
in the z flag, which will be set to 1 if %r1 = 0. The remaining flags (n, v, and c)

128 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

are set accordingly. The value of z is tested by making use of the be instruction.
If there are no remaining array elements to sum, then the program branches to
done which returns to the calling routine (which might be the operating system,
if this is the top level of a user program).

If the loop is not exited after the test for %r1 = 0, then %r1 is decremented by
the width of a word in bytes (4) by adding −4. The starting address of array a
(which is stored in %r2) and the index into a (%r1) are added into %r4, which
then points to a new element of a. The element pointed to by %r4 is then loaded
into %r5, which is added into the partial sum (%r3). The top of the loop is then
revisited as a result of the “ba loop” statement. The variable length is stored
after the instructions. The five elements of array a are placed in an area of mem-
ory according to the argument to the .org pseudo-op (location 3000).

Notice that there are three instructions for computing the address of the next

! %r5 – Holds an element of a

 .begin ! Start assembling

 .org 2048 ! Start program at 2048

 be done ! Finished when length=0

 addcc %r1, -4, %r1 ! Decrement array length

 ld %r4, %r5 ! %r5 ← Memory[%r4]

addcc %r3, %r5, %r3 ! Sum new element into r3

ba loop ! Repeat loop.

done: jmpl %r15 + 4, %r0 ! Return to calling routine

length: 20 ! 5 numbers (20 bytes) in a

 .org a_start ! Start of array a

a: 25 ! length/4 values follow

 –10

 33

 –5
 7

 .end ! Stop assembling

! %r4 – Pointer into array a

! %r3 – The partial sum

! %r2 – Starting address of array a

! Register usage: %r1 – Length of array a

! This program sums LENGTH numbers

loop: andcc %r1, %r1, %r0 ! Test # remaining elements
 andcc %r3, %r0, %r3 ! %r3 ← 0

 ld [address],%r2 ! %r2 ← address of a

 ld [length], %r1 ! %r1 ← length of array a

 addcc %r1, %r2, %r4 ! Address of next element

a_start .equ 3000 ! Address of array a

address: a_start

Figure 4-14 An ARC program sums five integers.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 129

array element, given the address of the top element in %r2, and the length of the
array in bytes in %r1:

addcc %r1, -4, %r1 ! Point to next element to be added

addcc %r1, %r2, %r4 ! Add it to the base of the array

ld %r4, %r5 ! Load the next element into %r5.

This technique of computing the address of a data value as the sum of a base plus
an index is so frequently used that the ARC and most other assembly languages
have special “addressing modes” to accomplish it. In the case of ARC, the ld
instruction address is computed as the sum of two registers or a register plus a
13-bit constant. Recall that register %r0 always contains the value zero, so by
specifying %r0 which is being done implicitly in the ld line above, we are wast-
ing an opportunity to have the ld instruction itself perform the address calcula-
tion. A single register can hold the operand address, and we can accomplish in
two instructions what takes three instructions in the example:

addcc %r1, -4, %r1 ! Point to next element to be added

ld %r1 + %r2, %r5 ! Load the next element into %r5.

Notice that we also save a register, %r4, which was used as a temporary place
holder for the address.

4.4.1 VARIATIONS IN MACHINE ARCHITECTURES AND ADDRESSING

The ARC is typical of a load/store computer. Programs written for load/store
machines generally execute faster, in part due to reducing CPU-memory traffic
by loading operands into the CPU only once, and storing results only when the
computation is complete. The increase in program memory size is usually con-
sidered to be a worthwhile price to pay.

Such was not the case when memories were orders of magnitude more expensive
and CPUs were orders of magnitude smaller, as was the situation earlier in the
computer age. Under those earlier conditions, for CPUs that had perhaps only a
single register to hold arithmetic values, intermediate results had to be stored in
memory. Machines had 3-address, 2-address, and 1-address arithmetic instruc-
tions. By this we mean that an instruction could do arithmetic with 3, 2, or 1 of
its operands or results in memory, as opposed to the ARC, where all arithmetic
and logic operands must be in registers.

130 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

Let us consider how the C expression A = B*C + D might be evaluated by each of
the three instruction types. In the examples below, when referring to a variable
“A,” this actually means “the operand whose address is A.” In order to calculate
some performance statistics for the program fragments below we will make the
following assumptions:

• Addresses, opcodes, and data words are 16-bits – a not uncommon size in
earlier machines.

• Opcodes are 8-bits in size.

• Operands are moved to and from memory one word at a time.

We will compute both program size, in bytes, and program memory traffic with
these assumptions.

Memory traffic has two components: the code itself, which must be fetched from
memory to the CPU in order to be executed, and the data values—operands
must be moved into the CPU in order to be operated upon, and results moved
back to memory when the computation is complete. Observing these computa-
tions allows us to visualize some of the trade-offs between program size and
memory traffic that the various instruction classes offer.

Three-Address Instructions

In a 3-address instruction, the expression A = B*C + D might be coded as:

mult B, C, A
add D, A, A

which means multiply B by C and store the result at A. (The mult and add
operations are generic; they are not ARC instructions.) Then, add D to A (at this
point in the program, A holds the temporary result of multiplying B times C)
and store the result at address A. The program size is 8×2 or 16 bytes. Memory
traffic is 16 + 2×2×3 or 28 bytes.

Two Address Instructions

In a two-address instruction, one of the operands is overwritten by the result.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 131

Here, the code for the expression A = B*C + D is:

load B, A
mult C, A
add D, A

The program size is now 3×3×2 or 18 bytes. Memory traffic is 18 + 2×2 + 2×2×3
or 34 bytes.

One Address, or Accumulator Instructions

A one-address instruction employs a single arithmetic register in the CPU,
known as the accumulator. The accumulator typically holds one arithmetic
operand, and also serves as the target for the result of an arithmetic operation.
The one-address format is not in common use these days, but was more common
in the early days of computing when registers were more expensive and fre-
quently served multiple purposes. It serves as temporary storage for one of the
operands and also for the result. The code for the expression A = B*C + D is
now:

load B
mult C
add D
store A

The load instruction loads B into the accumulator, mult multiplies C by the
accumulator and stores the result in the accumulator, and add does the corre-
sponding addition. The store instruction stores the accumulator in A. The pro-
gram size is now 2×2×4 or 16 bytes, and memory traffic is 16 + 4×2 or 24 bytes.

Special-Purpose Registers

In addition to the general-purpose registers and the accumulator described
above, most modern architectures include other registers that are dedicated to
specific purposes. Examples include

• Memory index registers: The Intel 80x86 Source Index (SI) and Destina-
tion Index (DI) registers. These are used to point to the beginning or end
of an array in memory. Special “string” instructions transfer a byte or a

132 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

word from the starting memory location pointed to by SI to the ending
memory location pointed to by DI, and then increment or decrement these
registers to point to the next byte or word.

• Floating point registers: Many current-generation processors have special
registers and instructions that handle floating point numbers.

• Registers to support time, and timing operations: The PowerPC 601 pro-
cessor has Real-Time Clock registers that provide a high-resolution mea-
sure of real time for indicating the date and the time of day. They provide
a range of approximately 135 years, with a resolution of 128 ns.

• Registers in support of the operating system: most modern processors have
registers to support the memory system.

• Registers that can be accessed only by “privileged instructions,” or when in
“Supervisor mode.” In order to prevent accidental or malicious damage to
the system, many processors have special instructions and registers that are
unavailable to the ordinary user and application program. These instruc-
tions and registers are used only by the operating system.

4.4.2 PERFORMANCE OF INSTRUCTION SET ARCHITECTURES

While the program size and memory usage statistics calculated above are
observed out of context from the larger programs in which they would be con-
tained, they do show that having even one temporary storage register in the CPU
can have a significant effect on program performance. In fact, the Intel Pentium
processor, considered among the faster of the general-purpose CPUs, has only a
single accumulator, though it has a number of special-purpose registers that sup-
port it. There are many other factors that affect real-world performance of an
instruction set, such as the time an instruction takes to perform its function, and
the speed at which the processor can run.

4.5 Accessing Data in Memory—Addressing Modes
Up to this point, we have seen four ways of computing the address of a value in
memory: (1) a constant value, known at assembly time, (2) the contents of a reg-
ister, (3) the sum of two registers, and (4) the sum of a register and a constant.

Addressing Mode Syntax Meaning

Table4.1 Addressing Modes

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 133

Table 4.1 gives names to these addressing modes, and shows a few others as well.
Notice that the syntax of the table differs from that of the ARC. This is a com-
mon, unfortunate feature of assembly languages: each one differs from the rest in
its syntax conventions. The notation M[x] in the Meaning column assumes
memory is an array, M, whose byte index is given by the address computation in
brackets. There may seem to be a bewildering assortment of addressing modes,
but each has its usage:

• Immediate addressing allows a reference to a constant that is known at as-
sembly time.

• Direct addressing is used to access data items whose address is known at as-
sembly time.

• Indirect addressing is used to access a pointer variable whose address is
known at compile time. This addressing mode is seldom supported in mod-
ern processors because it requires two memory references to access the op-
erand, making it a complicated instruction. Programmers who wish to
access data in this form must use two instructions, one to access the pointer
and another to access the value to which it refers. This has the beneficial
side effect of exposing the complexity of the addressing mode, perhaps dis-
couraging its use.

• Register indirect addressing is used when the address of the operand is not
known until run time. Stack operands fit this description, and are accessed
by register indirect addressing, often in the form of push and pop instruc-
tions that also decrement and increment the register respectively.

• Register indexed, register based, and register based indexed addressing are

Immediate #K K

Direct K M[K]

Indirect (K) M[M[K]]

Register (Rn) M[Rn]

Register Indexed (Rm + Rn) M[Rm + Rn]

Register Based (Rm + X) M[Rm + X]

Register Based Indexed (Rm + Rn + X) M[Rm + Rn + X]

Table4.1 Addressing Modes

134 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

used to access components of arrays such as the one in Figure 4-14, and
components buried beneath the top of the stack, in a data structure known
as the stack frame, which is discussed in the next section.

4.6 Subroutine Linkage and Stacks
A subroutine, sometimes called a function or procedure, is a sequence of
instructions that is invoked in a manner that makes it appear to be a single
instruction in a high level view. When a program calls a subroutine, control is
passed from the program to the subroutine, which executes a sequence of
instructions and then returns to the location just past where it was called. There
are a number of methods for passing arguments to and from the called routine,
referred to as calling conventions. The process of passing arguments between
routines is referred to as subroutine linkage.

One calling convention simply places the arguments in registers. The code in
Figure 4-15 shows a program that loads two arguments into %r1 and %r2, calls

subroutine add_1, and then retrieves the result from %r3. Subroutine add_1
takes its operands from %r1 and %r2, and places the result in %r3 before return-
ing via the jmpl instruction. This method is fast and simple, but it will not work
if the number of arguments that are passed between the routines exceeds the
number of free registers, or if subroutine calls are deeply nested.

A second calling convention creates a data link area. The address of the data link
area is passed in a predetermined register to the called routine. Figure 4-16 shows
an example of this method of subroutine linkage. The .dwb pseudo-op in the
calling routine sets up a data link area that is three words long, at addresses x,

! Calling routine

ld [x], %r1
ld [y], %r2
call add_1

st %r3, [z]

.

.

.

! Called routine

addcc %r1, %r2, %r3
jmpl %r15 + 4, %r0

add_1:

.

.

.

! %r3 ← %r1 + %r2

53x:
10y:
 0z:

Figure 4-15 Subroutine linkage using registers.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 135

x+4, and x+8. The calling routine loads its two arguments into x and x+4, calls
subroutine add_2, and then retrieves the result passed back from add_2 from
memory location x+8. The address of data link area x is passed to add_2 in reg-
ister %r5.

Note that sethi must have a constant for its source operand, and so the assem-
bler recognizes the sethi construct shown for the calling routine and replaces x
with its address. The srl that follows the sethi moves the address x into the
least significant 22 bits of %r5, since sethi places its operand into the leftmost
22 bits of the target register. An alternative approach to loading the address of x
into %r5 would be to use a storage location for the address of x, and then simply
apply the ld instruction to load the address into %r5. While the latter approach
is simpler, the sethi/srl approach is faster because it does not involve a time
consuming access to the memory.

Subroutine add_2 reads its two operands from the data link area at locations
%r5 and %r5 + 4, and places its result in the data link area at location %r5 +
8 before returning. By using a data link area, arbitrarily large blocks of data can
be passed between routines without copying more than a single register during
subroutine linkage. Recursion can create a burdensome bookkeeping overhead,
however, since a routine that calls itself will need several data link areas. Data link
areas have the advantage that their size can be unlimited, but also have the disad-
vantage that the size of the data link area must be known at assembly time.

A third calling convention uses a stack. The general idea is that the calling rou-
tine pushes all of its arguments (or pointers to arguments, if the data objects are
large) onto a last-in-first-out stack. The called routine then pops the passed argu-

! Calling routine

st %r1, [x]
st %r2, [x+4]
sethi x, %r5

call add_2

x:

ld

.dwb

.

.

.

.

.

.

[x+8], %r3

3

! Called routine

ld %r5, %r8
ld %r5 + 4, %r9
addcc
st

%r8, %r9, %r10
%r10, %r5 + 8

add_2:

jmpl %r15 + 4, %r0
srl %r5, 10, %r5

! Data link area

! x[2] ← x[0] + x[1]

Figure 4-16 Subroutine linkage using a data link area.

136 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

ments from the stack, and pushes any return values onto the stack. The calling
routine then retrieves the return value(s) from the stack and continues execution.
A register in the CPU, known as the stack pointer, contains the address of the
top of the stack. Many machines have push and pop instructions that automat-
ically decrement and increment the stack pointer as data items are pushed and
popped.

An advantage of using a stack is that its size grows and shrinks as needed. This
supports arbitrarily deep nesting of procedure calls without having to declare the
size of the stack at assembly time. An example of passing arguments using a stack
is shown in Figure 4-17. Register %r14 serves as the stack pointer (%sp) which is

initialized by the operating system prior to execution of the calling routine. The
calling routine places its arguments (%r1 and %r2) onto the stack by decrement-
ing the stack pointer (which moves %sp to the next free word above the stack)
and by storing each argument on the new top of the stack. Subroutine add_3 is
called, which pops its arguments from the stack, performs an addition operation,
and then stores its return value on the top of the stack before returning. The call-
ing routine then retrieves its argument from the top of the stack and continues
execution.

For each of the calling conventions, the call instruction is used, which saves the
current PC in %r15. When a subroutine finishes execution, it needs to return to
the instruction that follows the call, which is one word (four bytes) past the saved
PC. Thus, the statement “jmpl %r15 + 4, %r0” completes the return. If the
called routine calls another routine, however, then the value of the PC that was
originally saved in %r15 will be overwritten by the nested call, which means that

! Calling routine

.equ %r14
addcc %sp, -4, %sp
st %r1, %sp
addcc %sp, -4, %sp

%sp

st
call

.

.

.

.

.

.

%r2, %sp
add_3

! Called routine

.equ %r14
ld %sp, %r8
addcc %sp, 4, %sp
ld %sp, %r9
addcc
st

%r8, %r9, %r10
%r10, %sp

%sp

jmpl %r15 + 4, %r0

add_3:

ld %sp, %r3
addcc %sp, 4, %sp

! Arguments are on stack.
! %sp[0] ← %sp[0] + %sp[4]

Figure 4-17 Subroutine linkage using a stack.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 137

a correct return to the original calling routine through %r15 will no longer be
possible. In order to allow nested calls and returns, the current value of %r15
(which is called the link register) should be saved on the stack, along with any
other registers that need to be restored after the return.

If a register based calling convention is used, then the link register should be
saved in one of the unused registers before a nested call is made. If a data link
area is used, then there should be space reserved within it for the link register. If a
stack scheme is used, then the link register should be saved on the stack. For each
of the calling conventions, the link register and the local variables in the called
routines should be saved before a nested call is made, otherwise, a nested call to
the same routine will cause the local variables to be overwritten.

There are many variations to the basic calling conventions, but the stack-ori-
ented approach to subroutine linkage is probably the most popular. When a
stack based calling convention is used that handles nested subroutine calls, a
stack frame is built that contains arguments that are passed to a called routine,
the return address for the calling routine, and any local variables. A sample high
level program is shown in Figure 4-18 that illustrates nested function calls. The
operation that the program performs is not important, nor is the fact that the C
programming language is used, but what is important is how the subroutine calls
are implemented.

The behavior of the stack for this program is shown in Figure 4-19. The main
program calls func_1 with arguments 1 and 2, and then calls func_2 with
argument 10 before finishing execution. Function func_1 has two local vari-
ables i and j that are used in computing the return value j. Function func_2
has two local variables m and n that are used in creating the arguments to pass
through to func_1 before returning m.

The stack pointer (%r14 by convention, which will be referred to as %sp) is ini-
tialized before the program starts executing, usually by the operating system. The
compiler is responsible for implementing the calling convention, and so the
compiler produces code for pushing parameters and the return address onto the
stack, reserving room on the stack for local variables, and then reversing the pro-
cess as routines return from their calls. The stack behavior shown in Figure 4-19
is thus produced as the result of executing compiler generated code, but the code
may just as well have been written directly in assembly language.

As the main program begins execution, the stack pointer points to the top ele-

138 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

ment of the system stack (Figure 4-19a). When the main routine calls func_1 at
line 03 of the program shown in Figure 4-18 with arguments 1 and 2, the argu-
ments are pushed onto the stack, as shown in Figure 4-19b. Control is then
transferred to func_1 through a call instruction (not shown), and func_1
then saves the return address, which is in %r15 as a result of the call instruc-
tion, onto the stack (Figure 4-19c). Stack space is reserved for local variables i
and j of func_1 (Figure 4-19d). At this point, we have a complete stack frame
for the func_1 call as shown in Figure 4-19d, which is composed of the argu-
ments passed to func_1, the return address to the main routine, and the local
variables for func_1.

Just prior to func_1 returning to the calling routine, it releases the stack space
for its local variables, retrieves the return address from the stack, releases the stack
space for the arguments passed to it, and then pushes its return value onto the
stack as shown in Figure 4-19e. Control is then returned to the calling routine
through a jmpl instruction, and the calling routine is then responsible for
retrieving the returned value from the stack and decrementing the stack pointer

/* C program showing nested subroutine calls */

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

Line
No.

main()

{

 int w, z; /* Local variables */

 w = func_1(1,2); /* Call subroutine func_1 */

 z = func_2(10); /* Call subroutine func_2 */

} /* End of main routine */

int func_1(x,y) /* Compute x * x + y */

int x, y; /* Parameters passed to func_1 */

{

 int i, j; /* Local variables */

 i = x * x;

 j = i + y;

 return(j); /* Return j to calling routine */

}

int func_2(a) /* Compute a * a + a + 5 */

int a; /* Parameter passed to func_2 */

{

 int m, n; /* Local variables */

 n = a + 5;

 m = func_1(a,n);

 return(m); /* Return m to calling routine */

}

Figure 4-18 A C program illustrating nested function calls.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 139

to its position from before the call, as shown in Figure 4-19f. Routine func_2 is
then executed, and the process of building a stack frame starts all over again as
shown in Figure 4-19g. Since func_2 makes a call to func_1 before it returns,
there will be stack frames for both func_2 and func_1 on the stack at the same
time as shown in Figure 4-19h. The process then unwinds as before, finally
resulting in the stack pointer at its original position as shown in Figure 4-19(i-k).

4.7 Input and Output in Assembly Language
Finally, we come to ways in which an assembly language program can communi-
cate with the outside world: input and output (I/O) activities. One way that
communication between I/O devices and the rest of the machine can be handled
is with special instructions, and with a special I/O bus reserved for this purpose.
An alternative method for interacting with I/O devices is through the use of

Initial configuration.
w and z are already on the

stack. (Line 00 of program.)

(a)
Calling routine pushes
arguments onto stack,
prior to func_1 call.
(Line 03 of program.)

(b)
After the call, called

routine saves PC of calling
routine (%r15) onto stack.

(Line 06 of program.)

(c)

0

232–
4

Free area

%sp
Stack

0

232–
4

Free area

%sp

Stack

0

232–
4

Free area

%sp

1
2

1
2

%r15

Beginning
of stack
frame

Stack space is reserved for
func_1 local variables i

and j. (Line 09 of
program.)

(d)
Return value from

func_1 is placed on
stack, just prior to return.

(Line 12 of program.)

(e)
Calling routine pops
func_1 return value

from stack. (Line 03 of
program.)

(f)

0

232–
4

Free area

Stack

0

232–
4

Free area

Stack

0

232–
4

3

Stack

%sp

Stack
frame for
func_1

%sp

Free area

%sp
Stack

1
2

%r15
i
j

Figure 4-19 (a-f) Stack behavior during execution of the program shown in Figure 4-18.

140 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

memory mapped I/O, in which devices occupy sections of the address space
where no ordinary memory exists. Devices are accessed as if they are memory
locations, and so there is no need for handling devices with new instructions.

As an example of memory mapped I/O, consider again the memory map for the
ARC, which is illustrated in Figure 4-20. We see a few new regions of memory,
for two add-in video memory modules and for a touchscreen. A touchscreen
comes in two forms, photonic and electrical. An illustration of the photonic ver-
sion is shown in Figure 4-21. A matrix of beams covers the screen in the horizon-
tal and vertical dimensions. If the beams are interrupted (by a finger for example)
then the position is determined by the interrupted beams. (In an alternative ver-
sion of the touchscreen, the display is covered with a touch sensitive surface. The
user must make contact with the screen in order to register a selection.)

A stack frame is created
for func_2 as a result of
function call at line 04 of

program.

(g)
A stack frame is created

for func_1 as a result of
function call at line 19 of

program.

(h)
func_1 places return
value on stack. (Line

12 of program.)

(i)

0

232–
4

Free area

0

232–
4

%sp

Stack

0

232–
4

Free area

%sp

func_2 places return
value on stack. (Line 20 of

program.)

(j)
Program finishes. Stack is restored
to its initial configuration. (Lines

04 and 05 of program.)

(k)

0

232–
4

Free area

0

232–
4

Stack

115%sp

Stack
frame for
func_2

Free area

%sp
Stack

Stack

%sp

10
%r15
m
n

10
%r15
m
n
10
15

%r15
i
j

func_2
stack frame

func_1
stack frame

115

%r15
m
n

10

Stack

Free area

Figure 4-19 (g-k) (Continued.)

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 141

The only real memory occupies the address space between 222 and 223 – 1.
(Remember: 223 – 4 is the address of the leftmost byte of the highest word in the
big-endian format.) The rest of the address space is occupied by other compo-
nents. The address space between 0 and 216 – 1 (inclusive) contains built-in pro-
grams for the power-on bootstrap operation and basic graphics routines. The
address space between 216 and 219 – 1 is used for two add-in video memory
modules, which we will study in Problem Figure 4.3. Note that valid informa-

Reserved for built-in
bootstrap and graphics

routines

Add-in video memory #1

I/O space

0

216

Stack pointer
System Stack

Top of stack

Bottom of stack

Screen Flash
Touchscreen x
Touchscreen y

224 – 4

223 – 4

32 bits

Address Data

224 – 1byte

Add-in video memory #2
217

219

Working Memory

Unused

222

FFFFEC16
FFFFF016
FFFFF416

Figure 4-20 Memory map for the ARC, showing memory mapping.

LEDs
(sources)

Detector

User breaks
beams

Figure 4-21 A user selecting an object on a touchscreen.

142 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

tion is available only when the add-in memory modules are physically inserted
into the machine.

Finally, the address space between 223 and 224 – 1 is used for I/O devices. For
this system, the X and Y coordinates that mark the position where a user has
made a selection are automatically updated in registers that are placed in the
memory map. The registers are accessed by simply reading from the memory
locations where these registers are located. The “Screen Flash” location causes the
screen to flash whenever it is written.

Suppose that we would like to write a simple program that flashes the screen
whenever the user changes position. The flowchart in Figure 4-22 illustrates how

this might be done. The X and Y registers are first read, and are then compared
with the previous X and Y values. If either position has changed, then the screen
is flashed and the previous X and Y values are updated and the process repeats. If

Compare old X and Y
values to new values

Did X or Y
change?

No

Yes

Read X register.
Read Y register.

Flash screen

Update X and Y
registers

Figure 4-22 Flowchart illustrating the control structure of a program that tracks a touchscreen.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 143

neither position has changed, then the process simply repeats. This is an example
of the programmed I/O method of accessing a device. (See problem 4.3 at the
end of the chapter for a more detailed description.)

4.8 Case Study: The Java Virtual Machine ISA
Java is a high-level programming language developed by Sun Microsystems that
has taken a prominent position in the programming community. A key aspect of
Java is that Java binary codes are platform-independent, which means that the
same compiled code can run without modification on any computer that sup-
ports the Java Virtual Machine (JVM). The JVM is how Java achieves its plat-
form-independence: a standard specification of the JVM is implemented in the
native instruction sets of many underlying machines, and compiled Java codes
can then run in any JVM environment.

Programs that are written in fully compiled languages like C, C++, and Fortran,
are compiled into the native code of the target architecture, and are generally not
portable across platforms unless the source code is recompiled for the target
machine. Interpreted languages, like Perl, Tcl, AppleScript, and shell script, are
largely platform independent, but can execute 100 to 200 times slower than a
fully compiled language. Java programs are compiled into an intermediate form
known as bytecodes, which execute on the order of 10 times more slowly than
fully compiled languages, but the cross-platform compatibility and other lan-
guage features make Java a favorable programming language for many applica-
tions.

A high level view of the JVM architecture is shown in Figure 4-23. The JVM is a
stack-based machine, which means that the operands are pushed and popped
from a stack, instead of being transferred among general purpose registers. There
are, however, a number of special purpose registers, and also a number of local
variables that serve the function of general purpose registers in a “real” (non-vir-
tual) architecture. The Java Execution Engine takes compiled Java bytecodes at
its input, and interprets the bytecodes in a software implementation of the JVM,
or executes the bytecodes directly in a hardware implementation of the JVM.

Figure 4-24 shows a Java implementation of the SPARC program we studied in
Figure 4-13. The figure shows both the Java source program and the bytecodes
into which it was compiled. The bytecode file is known as a Java class file (which
is what a compiled Java program is called.)

144 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

Only a small number of bytes in a class file actually contain instructions; the rest
is overhead that the file must contain in order to run on the JVM. In Figure 4-25
we have “disassembled” the bytecodes back to their higher-level format. The
bytecode locations are given in hexadecimal, starting at location 0x00. The first
4 bytes contain the magic number 0xcafebabe which identifies the program as
a compiled Java class file. The major version and minor version numbers refer to
the Java runtime system for which the program is compiled. The number of
entries in the constant pool follows, which is actually 17 in this example: the
first entry (constant pool location 0) is always reserved for the JVM, and is not
included in the class file, although indexing into the constant pool starts at loca-
tion 0 as if it is explicitly represented. The constant pool contains the names of
methods (functions), attributes, and other information used by the runtime sys-
tem.

The remainder of the file is mostly composed of the constant pool, and execut-
able Java instructions. We will not cover all details of the Java class file here. The
reader is referred to (Meyer & Downing, 1997) for a full description of the Java

State variables

Constant pool

Local variables

Operand stack

.

.

.

.

.

.

St
ac

k
fr

am
e

Java Stack

Java Execution Engine

32 bits

32 bits

8 bits

.

.

.

0

n

.

.

.

0

65,535

Stack top index

Thread state

Current method pointer

Current methodÕs class pointer

Current methodÕs constant pool pointer

Stack frame pointer

Program counter
R

eg
is

te
rs

.

.

.

0

m

Byte Codes

Control

Figure 4-23 Architecture of the Java virtual machine.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 145

class file format.

The actual code that corresponds to the Java source program, which simply adds
the constants 15 and 9, and returns the result (24) to the calling routine on the
stack, appears in locations 0x00e3 - 0x00ef. Figure 4-26 shows how that por-
tion of the bytecode is interpreted. The program pushes the constants 15 and 9
onto the stack, using local variables 0 and 1 as intermediaries, and invokes the
iadd instruction which pops the top two stack elements, adds them, and places
the result on the top of the stack. The program then returns.

A cursory glance at the code shows some of the reasons why the JVM runs 10
times slower than native code. Notice that the program stores the arguments in
local variables 1 and 2, and then transfers them to the Java stack before adding
them. This transfer would be viewed as redundant by native code compilers for
other langauges, and would be eliminated. Given this example alone, there is
probably considerable room for speed improvements from the 10× slower execu-
tion time of today’s JVMs. Other improvements may also come in the form of
just in time (JIT) compilers. Rather than interpreting the JVM bytecodes one

0000 cafe babe 0003 002d 0012 0700 0e07 0010
0010 0a00 0200 040c 0007 0005 0100 0328 2956 ()V
0020 0100 1628 5b4c 6a61 7661 2f6c 616e 672f ...([Ljava/lang/
0030 5374 7269 6e67 3b29 5601 0006 3c69 6e69 String;)V...<ini
0040 743e 0100 0443 6f64 6501 000d 436f 6e73 t>...Code...Cons
0050 7461 6e74 5661 6c75 6501 000a 4578 6365 tantValue...Exce
0060 7074 696f 6e73 0100 0f4c 696e 654e 756d ptions...LineNum
0070 6265 7254 6162 6c65 0100 0e4c 6f63 616c berTable...Local
0080 5661 7269 6162 6c65 7301 000a 536f 7572 Variables...Sour
0090 6365 4669 6c65 0100 0361 6464 0100 0861 ceFile...add...a
00a0 6464 2e6a 6176 6101 0010 6a61 7661 2f6c dd.java...java/l
00b0 616e 672f 4f62 6a65 6374 0100 046d 6169 ang/Object...mai
00c0 6e00 2100 0100 0200 0000 0000 0200 0900 n...............
00d0 1100 0600 0100 0800 0000 2d00 0200 0400
00e0 0000 0d10 0f3c 1009 3d03 3e1b 1c60 3eb1
00f0 0000 0001 000b 0000 000e 0003 0000 0004
0100 0008 0006 000c 0002 0001 0007 0005 0001
0110 0008 0000 001d 0001 0001 0000 0005 2ab7
0120 0003 b100 0000 0100 0b00 0000 0600 0100
0130 0000 0100 0100 0d00 0000 0200 0f00

// This is file add.java

public class add {
 public static void main(String args[]) {
 int x=15, y=9, z=0;
 z = x + y;
 }
 }

Figure 4-24 Java program and compiled class file.

146 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

by one into the target machine code each time they are encountered, JIT compil-
ers take advantage of the fact that most programs spend most of their time in
loops and other iterative routines. As the JIT encounters each line of code for the
first time, it compiles it into native code and stores it away in memory for possi-

Magic number

Minor version
Major
version

Tag = 7 (Class)
18 items in constant pool

Name index = 14
Tag = 7 (Class)

Name
index = 16

Location

Tag = 10 (Methodref)

Class
index = 2

Name and type
index = 4

Tag = 12 (NameAndType)
Name index = 7

Type index = 5
Tag = 1 (Utf)

Length = 3 bytes
Ò()VÓ

Tag = 1 (Utf)
Length = 22 bytes Ò([Ljava/lang/Ó

ÒString;)VÓ

Tag = 1 (Utf) Length = 6 bytes
Ò<iniÓ

Òt>Ó

Tag = 1 (Utf)
Length =
4 bytes ÒCodeÓ

Tag = 1 (Utf)
Length =
13 bytes ÒConsÓ

ÒtantValueÓ

Tag = 1 (Utf)
Length =
10 bytes ÒExceÓ

ÒptionsÓ

Tag = 1 (Utf)
Length =
15 bytes ÒLineNumÓ

ÒberTableÓ

Tag = 1 (Utf)
Length =
14 bytes ÒLocalÓ

ÒVariablesÓ

Tag = 1 (Utf)
Length =
10 bytes ÒSourÓ

ÒceFileÓ

Tag = 1 (Utf)
Length =
3 bytes ÒaddÓ

Tag = 1 (Utf)
Length =
8 bytes

ÒaÓ

0000 cafe babe 0003 002d 0012 0700 0e07 0010

0010 0a00 0200 040c 0007 0005 0100 0328 2956

0020 0100 1628 5b4c 6a61 7661 2f6c 616e 672f

0030 5374 7269 6e67 3b29 5601 0006 3c69 6e69

0040 743e 0100 0443 6f64 6501 000d 436f 6e73

0050 7461 6e74 5661 6c75 6501 000a 4578 6365

0060 7074 696f 6e73 0100 0f4c 696e 654e 756d

0070 6265 7254 6162 6c65 0100 0e4c 6f63 616c

0080 5661 7269 6162 6c65 7301 000a 536f 7572

0090 6365 4669 6c65 0100 0361 6464 0100 0861

Figure 4-25 A Java class file.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 147

ble later use. The next time that code is executed, it is the native, compiled form
that is executed rather than the bytecodes.

Òdd.javaÓ

Tag = 1 (Utf)
Length =
16 bytes Òjava/lÓ

Òang/ObjectÓ

Tag = 1 (Utf)
Length =
4 bytes ÒmaiÓ

ÒnÓ

Access flags: ACC_PUBLIC | ACC_SUPER

This
class: add

Superclass: java/lang/Object
Interface
count

Fields count
Methods count

Access flags: ACC_PUBLIC | ACC_STATIC

Type index Ò([Ljava/lang/String;)VÓ
Attributes
count

Attribute name index: ÒCodeÓ

Name index Ò<init>Ó

Bytes count = 45 Max stack = 2
Max locals = 4

Code
count = 13

Attributes count
Handlers
count

Attribute name index: ÒLineNumberTableÓ

Bytes
count = 14

Lines
count = 3

Access flags: ACC_PUBLIC
Name index Ò<init>Ó

Type index Ò()VÓ
Attributes
count

Attribute name index: ÒCodeÓ

Bytes count = 29
Max stack = 2 Max

locals = 1

Code count
= 5

CODE
Attributes
count

Handlers count
Attribute name index: ÒLineNumberTableÓ

Bytes
count = 6

Lines
count = 1

Attributes count
Attribute name index ÒSourceFileÓ

Bytes count = 2 Source file index:
Òadd.javaÓ

Start PC /
Line no.

Start PC /
Line no.

Start PC /
Line no.

Start PC /
Line no.

bipush (0x10) 15 (0x0f)
istore_1 (0x3c)
bipush (0x10) 9 (0x09)

iconst_0 (0x03)

istore_2 (0x3d)

istore_3 (0x3e)
iload_1 (0x1b)
iload_2 (0x1c)
iadd (0x60)
istore_3 (0x3e)

return (0xb1)

CODE

00a0 6464 2e6a 6176 6101 0010 6a61 7661 2f6c

00b0 616e 672f 4f62 6a65 6374 0100 046d 6169

00c0 6e00 2100 0100 0200 0000 0000 0200 0900

00d0 1100 0600 0100 0800 0000 2d00 0200 0400

00e0 0000 0d10 0f3c 1009 3d03 3e1b 1c60 3eb1

00f0 0000 0001 000b 0000 000e 0003 0000 0004

0100 0008 0006 000c 0002 0001 0007 0005 0001

0110 0008 0000 001d 0001 0001 0000 0005 2ab7

0120 0003 b100 0000 0100 0b00 0000 0600 0100

0130 0000 0100 0100 0d00 0000 0200 0f00

Figure 4-25 (A Java class file (Continued).

148 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

■ SUMMARY

In this chapter, we introduced the ARC ISA, and studied some general properties
of ISAs. In the design of an instruction set, a balance must be struck between sys-
tem performance and the characteristics of the technology in which the processor is
implemented. Interaction between the CPU and the memory is a key consider-
ation.

When a memory access is made, the way in which the address is calculated is
called the memory addressing mode. We examined the sequence of computations
that can be combined to make up an addressing mode. We also looked at some spe-
cific cases which are commonly identified by name.

We also looked at several parts of a computer system that play a role in the execu-
tion of a program. We learned that programs are made up of sequences of instruc-
tions, which are taken from the instruction set of the CPU. In the next chapter,
we will study how these sequences of instructions are translated into object code.

■ FURTHER READING
The material in this chapter is for the most part a collection of the historical
experience gained in fifty years of stored program computer designs. Although

Figure 4-26 Disassembled version of the code that implement the Java program in Figure 4-24.

Location Code Mnemonic Meaning

0x00e3 0x10 bipush Push next byte onto stack

0x00e4 0x0f 15 Argument to bipush

0x00e5 0x3c istore_1 Pop stack to local variable 1

0x00e6 0x10 bipush Push next byte onto stack

0x00e7 0x09 9 Argument to bipush

0x00e8 0x3d istore_2 Pop stack to local variable 2

0x00e9 0x03 iconst_0 Push 0 onto stack

0x00ea 0x3e istore_3 Pop stack to local variable 3

0x00eb 0x1b iload_1 Push local variable 1 onto stack

0x00ec 0x1c iload_2 Push local variable 2 onto stack

0x00ed 0x60 iadd Add top two stack elements

0x00ef 0xb1 return Return

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 149

each generation of computer systems is typically identified by a specific hardware
technology, there have also been historically important instruction set architec-
tures. In the first generation systems of the 1950’s, such as Von Neuman’s
EDVAC, Eckert and Mauchly’s UNIVAC and the IBM 701, programming was
performed by hand in machine language. Although simple, these instruction set
architectures defined the fundamental concepts surrounding opcodes and oper-
ands.

The concept of an instruction set architecture as an identifiable entity can be
traced to the designers of the IBM S/360 in the 1960’s. The VAX architecture for
Digital Equipment Corporation can also trace its roots to this period when the
minicomputers, the PDP-4 and PDP-8 were being developed. Both the S/360
and VAX are two-address architectures. Significant one-address architectures
include the Intel 8080 which is the predecessor to the modern 80x86, and its
contemporary at that time: the Zilog Z-80. As a zero-address architecture, the
Burroughs B5000 is also of historical significance.

There are a host of references that cover the various machine languages in exist-
ence, too many to enumerate here, and so we mention only a few of the more
celebrated cases. The machine languages of Babbage’s machines are covered in
(Bromley, 1987). The machine language of the early Institute for Advanced
Study (IAS) computer is covered in (Stallings, 1996). The IBM 360 machine lan-
guage is covered in (Strubl, 1975). The machine language of the 68000 can be
found in (Gill, 1987) and the machine language of the SPARC can be found in
(SPARC, 1992). A full description of the JVM and the Java class file format can
be found in (Meyer & Downing, 1997.)

Bromley, A. G., “The Evolution of Babbage’s Calculating Engines,” Annals of the
History of Computing, 9, pp. 113-138, (1987).

Gill, A., E. Corwin, and A. Logar, Assembly Language Programming for the 68000,
Prentice-Hall, Englewood Cliffs, New Jersey, (1987).

Meyer, J. and T. Downing, Java Virtual Machine, O’Reilly & Associates, Sepasto-
pol, California, (1997).

SPARC International, Inc., The SPARC Architecture Manual: Version 8, Prentice
Hall, Englewood Cliffs, New Jersey, (1992).

Stallings, W., Computer Organization and Architecture, 4/e, Prentice Hall, Upper

150 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

Saddle River, (1996).

Struble, G. W., Assembler Language Programming: The IBM System/360 and 370,
2/e, Addison-Wesley, Reading, (1975).

■ PROBLEMS
4.1 A memory has 224 addressable locations. What is the smallest width in

bits that the address can be while still being able to address all 224 locations?

4.2 What are the lowest and highest addresses in a 220 byte memory, in which
a four-byte word is the smallest addressable unit?

4.3 The memory map for the ARC is shown in Figure 4-20.

(a) How much memory (in bytes) is available for each of the add-in video
memory modules? (Give your answer as powers of two or sums of powers of
two, e.g. 210.)

(b) When a finger is drawn across the touchscreen, the horizontal (x) and ver-
tical (y) positions of the joystick are updated in registers that are accessed at
locations (FFFFF0)16 and (FFFFF4)16, respectively. When the number ‘1’ is
written to the register at memory location (FFFFEC)16 the screen flashes, and
then location (FFFFEC)16 is automatically cleared to zero by the hardware
(the software does not have to clear it). Write an ARC program that flashes the
screen every time the user’s position changes. Use the skeleton program shown
below.

.begin
ld [x], %r7! %r7 and %r8 now point to the
ld [y], %r8! touchscreen x and y locations
ld [flash], %r9! %r9 points to flash location

loop:ld %r7, %r1 ! Load current touchscreen position
ld %r8, %r2! in %r1=x and %r2=y
ld [old_x], %r3! Load old touchscreen position
ld [old_y], %r4! in %r3=x and %r4=y
orncc %r3, %r0, %r3! Form 1’s complement of old_x
addcc %r3, 1, %r3! Form 2’s complement of old_x
addcc %r1, %r3, %r3! %r3 <- x - old_x
be x_not_moved! Branch if x did not change
ba moved ! x changed, so no need to check y

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 151

x_not_moved: ! Your code starts here, about four lines.

 <— YOUR CODE GOES HERE

! This portion of the code is entered only if joystick
! is moved.
! Flash screen; store new x, y values; repeat.

moved:orcc %r0, 1, %r5! Place 1 in %r5
st %r5, %r9! Store 1 in flash register
st %r1, [old_x]! Update old joystick position
st %r2, [old_y]! with current position
ba loop! Repeat

flash: #FFFFEC! Location of flash register
x: #FFFFF0 ! Location of touchscreen x register
y: #FFFFF4 ! Location of touchscreen y register
old_x: 0 ! Previous x position
old_y: 0 ! Previous y position

.end

4.4 Write an ARC subroutine that performs a swap operation on the 32-bit
operands x = 25 and y = 50, which are stored in memory. Use as few reg-
isters as you can.

4.5 A section of ARC assembly code is shown below. What does it do? Express
your answer in terms of the actions it goes through. Does it add up numbers,
or clear something out? Does it simulate a for loop, a while loop, or some-
thing else? Assume that a and b are memory locations that are defined else-
where in the code.

Y: ld [k], %r1
addcc %r1, -4, %r1
st %r1, [k]
bneg X
ld [a], %r1, %r2
ld [b], %r1, %r3
addcc %r2, %r3, %r4
st %r4, %r1, [c]
ba Y

X: jmpl %r15 + 4, %r0
k: 40

4.6 A pocket pager contains a small processor with 27 8-bit words of memory.

152 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

The ISA has four registers: R0, R1, R2, and R3. The instruction set is shown
in Figure 4-27, as well as the bit patterns that correspond to each register, the

instruction format, and the modes, which determine if the operand is a regis-
ter (mode bit = 0) or the operand is a memory location (mode bit = 1). Either
or both of the operands can be registers, but both operands cannot be mem-
ory locations. If the source or destination is a memory location, then the cor-
responding source or destination field in the instruction is not used since the
address field is used instead.

(a) Write a program using object code (not mnemonics) that swaps the con-
tents of registers R0 and R1. You are free to use the other registers as necessary,
but do not use memory. Use no more than four lines of code (fewer lines are
possible). Place 0’s in any positions where the value does not matter.

(b) Write a program using object code that swaps the contents of memory
locations 12 and 13. As in part (a), you are free to use the other registers as
necessary, but do not use other memory locations. Place 0’s in any positions
where the value does not matter.

INSTRUCTION FORMAT

Opcode
Src

Mode Src
Dst

Mode Dst Operand Address

MODE BIT PATTERNS

Mode Bit Pattern

Register

Direct

0

1

REGISTER BIT PATTERNS

Register Bit Pattern

R0

R1

00

01

R2 10

R3 11

INSTRUCTION SET

Mnemonic Opcode

LOAD 000

Meaning

Dst ← Src or Memory

STORE 001 Dst or Memory ← Src

ADD 010 Dst ← Src + Dst

AND 011 Dst ← AND(Src, Dst)

BZERO 100 Branch if Src = 0

JUMP 101 Unconditional jump

COMP 110 Dst ← Complement of Src

RSHIFT 111 Dst ← Src shifted right 1 bit

Note: Dst = Destination register
Src = Source register

Figure 4-27 A pocket pager ISA.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 153

4.7 An ARC program calls the subroutine foo, passing it three arguments, a,
b, and c. The subroutine has two local variables, m and n. Show the position
of the stack pointer and the contents of the relevant stack elements for a stack
based calling convention at the points in the program shown below:

(1) just before executing the call at label x;

(2) when the stack frame for foo is completed;

(3) just before executing the ld at label z (i.e., when the calling routine
resumes).

Use the stack notation shown in Figure 4-19.

! Push the arguments a, b, and c
x: call foo
z: ld %r1, %r2

.

.

.
foo:! Subroutine starts here

.

.

.
y: jmpl %r15 + 4, %r0

4.8 Why does sethi only load the high 22 bits of a register? It would be
more useful if sethi loaded all 32 bits of a register. What is the problem with
having sethi load all 32 bits?

4.9 Which of the three subroutine linkage conventions covered in this chapter
(registers, data link area, stack) is used in Figure 4-14?

4.10 A program compiled for a SPARC ISA writes the 32-bit unsigned integer
0xABCDEF01 to a file, and reads it back correctly. The same program com-
piled for a Pentium ISA also works correctly. However, when the file is trans-
ferred between machines, the program incorrectly reads the integer from the
file as 0x01EFCDAB. What is going wrong?

4.11 Refer to Figure 4-25. Show the Java assembly language instructions for the

154 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

code shown in locations 0x011e - 0x0122. Use the syntax format shown in
locations 0x00e3 - 0x0ef of that same figure.

You will need to make use of the following Java instructions:

invokespecial n (opcode 0xb7) – Invoke a method with index n into the
constant pool. Note that n is a 16-bit (two-byte) index that follows the
invokespecial opcode.

aload_0 (opcode 0x2a) – Push local variable 0 onto the stack.

4.12 Is the JVM a little-endian or big-endian machine? Hint: Examine the first
line of the bytecode program in Figure 4-24.

4.13 Write an ARC program that implements the bytecode program shown in
Figure 4-26. Assume that, analogous in the code in the figure, the arguments
are passed on a stack, and that the return value is placed on the top of the
stack.

4.14 A JVM is implemented using the ARC ISA.

a) How much memory traffic will be generated when the program of Figure
4-26 executes?

b) For exercise 4-13, compute the memory traffic your program will generate.
Then, for part (a) above, compare that traffic with the amount generated by
your program. If most of the execution time of a program is due to its mem-
ory accesses, how much faster will your program be compared to the program
in Figure 4-26?

4.15 Can a Java bytecode program ever run as fast as a program written in the
native language of the processor? Defend your answer in one or two para-
graphs.

4.16 (a) Write three-address, two-address, and one-address programs to com-
pute the function A = (B-C)*(D-E). Assume 8-bit opcodes, 16-bit operands
and addresses, and that data is moved to and from memory in 16-bit chunks.
(Also assume that the opcode must be transferred from memory by itself.)
Your code should not overwrite any of the operands. Use any temporary regis-

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 155

ters needed.

b. Compute the size of your program in bytes.

c. Compute the memory traffic your program will generate at execution time,
including instruction fetches.

4.17 Repeat Exercise 4.12 above, using ARC assembly language.

156 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

