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3.1 Overview

 

In the previous chapter we explored a few ways that numbers can be represented
in a digital computer, but we only briefly touched upon arithmetic operations
that can be performed on those numbers. In this chapter we cover four basic
arithmetic operations: addition, subtraction, multiplication, and division. We
begin by describing how these four operations can be performed on fixed point
numbers, and continue with a description of how these four operations can be
performed on floating point numbers.

Some of the largest problems, such as weather calculations, quantum mechanical
simulations, and land-use modeling, tax the abilities of even today’s largest com-
puters. Thus the topic of high-performance arithmetic is also important. We
conclude the chapter with an introduction to some of the algorithms and tech-
niques used in speeding arithmetic operations.

 

3.2 Fixed Point Addition and Subtraction

 

The addition of binary numbers and the concept of overflow were briefly dis-
cussed in Chapter 2. Here, we cover addition and subtraction of both signed and
unsigned fixed point numbers in detail. Since the two’s complement representa-
tion of integers is almost universal in today’s computers, we will focus primarily
on two’s complement operations. We will briefly cover operations on 1’s comple-
ment and BCD numbers, which have a foundational significance for other areas
of computing, such as networking (for 1’s complement addition) and hand-held
calculators (for BCD arithmetic.)

 

ARITHMETIC

 

 3



 

64

 

CHAPTER  3       ARITHMETIC

 

3.2.1

 

TWO’S COMPLEMENT ADDITION AND SUBTRACTION

 

In this section, we look at the addition of signed two’s complement numbers. As
we explore the 

 

addition

 

 of signed numbers, we also implicitly cover 

 

subtraction

 

 as
well, as a result of the arithmetic principle:

a - b = a + (

 

−

 

b).

We can negate a number by complementing it (and adding 1, for two’s comple-
ment), and so we can perform subtraction by complementing and adding. This
results in a savings of hardware because it avoids the need for a hardware subtrac-
tor. We will cover this topic in more detail later.

We will need to modify the interpretation that we place on the results of addition
when we add two’s complement numbers. To see why this is the case, consider
Figure 3-1. With addition on the real number line, numbers can be as large or as

small as desired—the number line goes to 

 

±∞

 

, so the real number line can
accommodate numbers of any size. On the other hand, as discussed in Chapter
2, computers represent data using a finite number of bits, and as a result can only
store numbers within a certain range. For example, an examination of Table 2.1
shows that if we restrict the size of a number to, for example, 3 bits, there will
only be eight possible two’s complement values that the number can assume. In
Figure 3-1 these values are arranged in a circle beginning with 000 and proceed-
ing around the circle to 111 and then back to 000. The figure also shows the dec-
imal equivalents of these same numbers. 

Some experimentation with the number circle shows that numbers can be added
or subtracted by traversing the number circle clockwise for addition and counter-
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Figure 3-1    Number circle for 3-bit two’s complement numbers.
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clockwise for subtraction. Numbers can also be subtracted by two’s complement-
ing the subtrahend and adding. Notice that overflow can only occur for addition
when the operands (“addend” and “augend”) are of the same sign. Furthermore,
overflow occurs if a transition is made from +3 to 

 

−

 

4 while proceeding around
the number circle when adding, or from 

 

−

 

4 to +3 while subtracting. (Two’s com-
plement overflow is discussed in more detail later in the chapter.)

Here are two examples of 8-bit two’s complement addition, first using two posi-
tive numbers:

      0 0 0 0 1 0 1 0 (+10)

 

10

 

+    0 0 0 1 0 1 1 1 (+23)

 

10

 

 ———————

      0 0 1 0 0 0 0 1 (+33)

 

10

 

A positive and a negative number can be added in a similar manner:

        0 0 0 0 0 1 0 1 (+5)

 

10

 

    +   1 1 1 1 1 1 1 0 (

 

−

 

2)

 

10

 

        ___________

Discard carry 

 

→

 

(1)    0 0 0 0 0 0 1 1 (+3)

 

10

 

The carry produced by addition at the highest (leftmost) bit position is discarded
in two’s complement addition. A similar situation arises with a carry out of the
highest bit position when adding two negative numbers:

       1 1 1 1 1 1 1 1 (

 

−

 

1)

 

10

 

+     1 1 1 1 1 1 0 0 (

 

−

 

4)

 

10

 

       ——————

Discard carry 

 

→

 

(1)   1 1 1 1 1 0 1 1 (

 

−

 

5)

 

10

 

The carry out of the leftmost bit is discarded because the number system is 

 

mod-
ular

 

—it “wraps around” from the largest positive number to the largest negative
number as Figure 3-1 shows. 

Although an addition operation may have a (discarded) carry-out from the MSB,
this does not mean that the result is erroneous. The two examples above yield
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correct results in spite of the fact that there is a carry-out of the MSB. The next
section discusses overflow in two’s complement addition in more detail.

 

Overflow

 

When two numbers are added that have large magnitudes and the same sign, an

 

overflow

 

 will occur if the result is too large to fit in the number of bits used in
the representation. Consider adding (+80)

 

10

 

 and (+50)

 

10

 

 using an eight bit for-
mat. The result should be (+130)

 

10

 

, however, as shown below, the result is
(

 

−

 

126)

 

10

 

:

+ 0 1 0 1 0 0 0 0 (+80)

 

10

 

+ 0 0 1 1 0 0 1 0 (+50)

 

10

 

———————

+ 1 0 0 0 0 0 1 0 (

 

−

 

126)

 

10

 

This should come as no surprise, since we know that the largest positive 8-bit
two’s complement number is +(127)

 

10

 

, and it is therefore impossible to represent
(+130)

 

10

 

. Although the result 10000010

 

2

 

 “looks” like 130

 

10

 

 if we think of it in
unsigned form, the sign bit indicates a negative number in the signed form,
which is clearly wrong.

In general, if two numbers of opposite signs are added, then an overflow cannot
occur. Intuitively, this is because the magnitude of the result can be no larger
than the magnitude of the larger operand. This leads us to the definition of two’s
complement overflow: 

 

If the numbers being added are of the same sign and the result is of the
opposite sign, then an overflow occurs and the result is incorrect. If the
numbers being added are of opposite signs, then an overflow will never
occur. As an alternative method of detecting overflow for addition, an
overflow occurs if and only if the carry into the sign bit differs from the
carry out of the sign bit. 

If a positive number is subtracted from a negative number and the result
is positive, or if a negative number is subtracted from a positive number
and the result is negative, then an overflow occurs. If the numbers being
subtracted are of the same sign, then an overflow will never occur.
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3.2.2

 

HARDWARE IMPLEMENTATION OF ADDERS AND SUBTRACTORS

 

Up until now we have focused on algorithms for addition and subtraction. Now
we will take a look at implementations of simple adders and subtractors.

 

Ripple-Carry Addition and Ripple-Borrow Subtraction

 

In Appendix A, a design of a four-bit ripple-carry adder is explored. The adder is
modeled after the way that we normally perform decimal addition by hand, by
summing digits in one column at a time while moving from right to left. In this
section, we review the 

 

ripple-carry adder

 

, and then take a look at a 

 

ripple-bor-
row subtractor

 

. We then combine the two into a single addition/subtraction
unit.

Figure 3-2 shows a 4-bit ripple-carry adder that is developed in Appendix A. Two

binary numbers 

 

A

 

 and 

 

B

 

 are added from right to left, creating a sum and a carry
at the outputs of each full adder for each bit position.

Four 4-bit ripple-carry adders are cascaded in Figure 3-3 to add two 16-bit num-
bers. The rightmost full adder has a carry-in of 0. Although the rightmost full
adder can be simplified as a result of the carry-in of 0, we will use the more gen-
eral form and force 

 

c

 

0

 

 to 0 in order to simplify subtraction later on.

 

Subtraction

 

 of binary numbers proceeds in a fashion analogous to addition. We
can subtract one number from another by working in a single column at a time,
subtracting digits of the 

 

subtrahend

 

 

 

b

 

i

 

, from the 

 

minuend

 

 

 

a

 

i

 

, as we move from
right to left. As in decimal subtraction, if the subtrahend is larger than the minu-
end or there is a borrow from a previous digit then a borrow must be propagated
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b0 a0
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Full
adder

b1 a1

s1

Full
adder

b2 a2

s2

Full
adder

b3 a3

c4

s3

0
c0c1c2c3

Figure 3-2    Ripple-carry adder.
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to the next most significant bit. Figure 3-4 shows the truth table and a
“black-box” circuit for subtraction.

Full subtractors can be cascaded to form 

 

ripple-borrow

 

 subtractors in the same
manner that full adders are cascaded to form ripple-carry adders. Figure 3-5 illus-
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Figure 3-3    A 16-bit adder is made up of a cascade of four 4-bit ripple-carry adders.
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Figure 3-4    Truth table and schematic symbol for a ripple-borrow subtractor.
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trates a four-bit ripple-borrow subtractor that is made up of four full subtractors.

As discussed above, an alternative method of implementing subtraction is to
form the two’s complement negative of the subtrahend and 

 

add

 

 it to the minu-
end. The circuit that is shown in Figure 3-6 performs both addition and subtrac-

tion on four-bit two’s complement numbers by allowing the 

 

b

 

i

 

 inputs to be
complemented when subtraction is desired. An /SUBTRACT control line
determines which function is performed. The bar over the ADD symbol indi-
cates the ADD operation is active when the signal is low. That is, if the control
line is 0, then the 

 

a

 

i

 

 and 

 

b

 

i

 

 inputs are passed through to the adder, and the sum is
generated at the 

 

s

 

i

 

 outputs. If the control line is 1, then the 

 

a

 

i

 

 inputs are passed
through to the adder, but the 

 

b

 

i

 

 inputs are one’s complemented by the XOR
gates before they are passed on to the adder. In order to form the two’s comple-
ment negative, we must add 1 to the one’s complement negative, which is
accomplished by setting the 

 

carry_in

 

 line (

 

c

 

0

 

) to 1 with the control input. In this
way, we can share the adder hardware among both the adder and the subtractor.

 

3.2.3

 

ONE’S COMPLEMENT ADDITION AND SUBTRACTION

 

Although it is not heavily used in mainstream computing anymore, the one’s
complement representation was used in early computers. One’s complement
addition is handled somewhat differently from two’s complement addition: the
carry out of the leftmost position is not discarded, but is added back into the
least significant position of the integer portion as shown in Figure 3-7. This is
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Figure 3-6    Addition / subtraction unit.
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known as an 

 

end-around carry

 

.

We can better visualize the reason that the end-around carry is needed by exam-
ining the 3-bit one’s complement number circle in Figure 3-8. Notice that the

number circle has two positions for 0. When we add two numbers, if we traverse
through both 

 

−

 

0 and +0, then we must compensate for the fact that 0 is visited
twice. The end-around carry advances the result by one position for this situa-
tion.

Notice that the distance between 

 

−

 

0 and +0 on the number circle is the distance
between two integers, and is 

 

not

 

 the distance between two successive represent-
able numbers. As an illustration of this point, consider adding (5.5)

 

10

 

 and
(

 

−

 

1.0)

 

10

 

 in one’s complement arithmetic, which is shown in Figure 3-9. (Note
that we can also treat this as a subtraction problem, in which the subtrahend is
negated by complementing all of the bits, before adding it to the minuend.) In

 
+

1

1
0

0

0
1

0

0
1

0

1
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0

1
1

0
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+
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0

1
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Figure 3-7    An example of one’s complement addition with an end-around carry.
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Figure 3-8    Number circle for a three-bit signed one’s complement representation.
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order to add (+5.5)

 

10

 

 and (

 

−

 

1.0)

 

10

 

 and obtain the correct result in one’s comple-
ment, we add the end-around carry into the one’s position as shown. This adds
complexity to our number circle, because in the gap between +0 and 

 

−

 

0, there
are valid numbers that represent fractions that are less than 0, yet they appear on
the number circle before 

 

−

 

0 appears. If the number circle is reordered to avoid
this anomaly, then addition must be handled in a more complex manner. 

The need to look for two different representations for zero, and the potential
need to perform another addition for the end-around carry are two important
reasons for preferring the two’s complement arithmetic to one’s complement
arithmetic.

 

3.3 Fixed Point Multiplication and Division
Multiplication and division of fixed point numbers can be accomplished with
addition, subtraction, and shift operations. The sections that follow describe
methods for performing multiplication and division of fixed point numbers in
both unsigned and signed forms using these basic operations. We will first cover
unsigned multiplication and division, and then we will cover signed multiplica-
tion and division.

3.3.1 UNSIGNED MULTIPLICATION

Multiplication of unsigned binary integers is handled similar to the way it is car-
ried out by hand for decimal numbers. Figure 3-10 illustrates the multiplication
process for two unsigned binary integers. Each bit of the multiplier determines
whether or not the multiplicand, shifted left according to the position of the
multiplier bit, is added into the product. When two unsigned n-bit numbers are
multiplied, the result can be as large as 2n bits. For the example shown in Figure
3-10, the multiplication of two four-bit operands results in an eight-bit product.
When two signed n-bit numbers are multiplied, the result can be as large as only
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Figure 3-9    The end-around carry complicates addition for non-integers.
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2(n-1)+1 = (2n-1) bits, because this is equivalent to multiplying two (n-1)-bit
unsigned numbers and then introducing the sign bit.

A hardware implementation of integer multiplication can take a similar form to
the manual method. Figure 3-11 shows a layout of a multiplication unit for

four-bit numbers, in which there is a four-bit adder, a control unit, three four-bit
registers, and a one-bit carry register. In order to multiply two numbers, the mul-
tiplicand is placed in the M register, the multiplier is placed in the Q register, and
the A and C registers are cleared to zero. During multiplication, the rightmost bit
of the multiplier determines whether the multiplicand is added into the product
at each step. After the multiplicand is added into the product, the multiplier and
the A register are simultaneously shifted to the right. This has the effect of shift-
ing the multiplicand to the left (as for the manual process) and exposing the next
bit of the multiplier in position q0.

Figure 3-12 illustrates the multiplication process. Initially, C and A are cleared,

1 1 0 1

1 0 1 1×
1 1 0 1

1 1 0 1
0 0 0 0

1 1 0 1

1 0 0 0 1 1 1 1

(11)10

(13)10 Multiplicand M

Multiplier Q

(143)10 Product P

Partial products

Figure 3-10    Multiplication of two unsigned binary integers.
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Figure 3-11    A serial multiplier.
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and M and Q hold the multiplicand and multiplier, respectively. The rightmost
bit of Q is 1, and so the multiplier M is added into the product in the A register.
The A and Q registers together make up the eight-bit product, but the A register
is where the multiplicand is added. After M is added to A, the A and Q registers
are shifted to the right. Since the A and Q registers are linked as a pair to form
the eight-bit product, the rightmost bit of A is shifted into the leftmost bit of Q.
The rightmost bit of Q is then dropped, C is shifted into the leftmost bit of A,
and a 0 is shifted into C.

The process continues for as many steps as there are bits in the multiplier. On the
second iteration, the rightmost bit of Q is again 1, and so the multiplicand is
added to A and the C/A/Q combination is shifted to the right. On the third iter-
ation, the rightmost bit of Q is 0 so M is not added to A, but the C/A/Q combi-
nation is still shifted to the right. Finally, on the fourth iteration, the rightmost
bit of Q is again 1, and so M is added to A and the C/A/Q combination is
shifted to the right. The product is now contained in the A and Q registers, in
which A holds the high-order bits and Q holds the low-order bits.

3.3.2 UNSIGNED DIVISION

In longhand binary division, we must successively attempt to subtract the divisor
from the dividend, using the fewest number of bits in the dividend as we can.
Figure 3-13 illustrates this point by showing that (11)2 does not “fit” in 0 or 01,
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Figure 3-12    An example of multiplication using the serial multiplier.
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but does fit in 011 as indicated by the pattern 001 that starts the quotient.

Computer-based division of binary integers can be handled similar to the way
that binary integer multiplication is carried out, but with the complication that
the only way to tell if the dividend does not “fit” is to actually do the subtraction
and test if the remainder is negative. If the remainder is negative then the sub-
traction must be “backed out” by adding the divisor back in, as described below. 

In the division algorithm, instead of shifting the product to the right as we did
for multiplication, we now shift the quotient to the left, and we subtract instead
of adding. When two n-bit unsigned numbers are being divided, the result is no
larger than n bits.

Figure 3-14 shows a layout of a division unit for four-bit numbers in which there

is a five-bit adder, a control unit, a four-bit register for the dividend Q, and two
five-bit registers for the divisor M and the remainder A. Five-bit registers are used
for A and M, instead of 4-bit registers as we might expect, because an extra bit is

1 1

0 0 1 0

0 1 1 1
1 1

0

R 1

1

Figure 3-13    Example of base 2 division.
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Figure 3-14    A serial divider.
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needed to indicate the sign of the intermediate result. Although this division
method is for unsigned numbers, subtraction is used in the process and negative
partial results sometimes arise, which extends the range from −16 through +15,
thus there is a need for 5 bits to store intermediate results.

In order to divide two four-bit numbers, the dividend is placed in the Q register,
the divisor is placed in the M register, and the A register and the high order bit of
M are cleared to zero. The leftmost bit of the A register determines whether the
divisor is added back into the dividend at each step. This is necessary in order to
restore the dividend when the result of subtracting the divisor is negative, as
described above. This is referred to as restoring division, because the dividend is
restored to its former value when the remainder is negative. When the result is
not negative, then the least significant bit of Q is set to 1, which indicates that
the divisor “fits” in the dividend at that point.

Figure 3-15 illustrates the division process. Initially, A and the high order bit of
M are cleared, and Q and the low order bits of M are loaded with the dividend
and divisor, respectively. The A and Q registers are shifted to the left as a pair and
the divisor M is subtracted from A. Since the result is negative, the divisor is
added back to restore the dividend, and q0 is cleared to 0. The process repeats by
shifting A and Q to the left, and by subtracting M from A. Again, the result is
negative, so the dividend is restored and q0 is cleared to 0. On the third iteration,
A and Q are shifted to the left and M is again subtracted from A, but now the
result of the subtraction is not negative, so q0 is set to 1. The process continues
for one final iteration, in which A and Q are shifted to the left and M is sub-
tracted from A, which produces a negative result. The dividend is restored and q0
is cleared to 0. The quotient is now contained in the Q register and the remain-
der is contained in the A register.

3.3.3 SIGNED MULTIPLICATION AND DIVISION

If we apply the multiplication and division methods described in the previous
sections to signed integers, then we will run into some trouble. Consider multi-
plying −1 by +1 using four-bit words, as shown in the left side of Figure 3-16.
The eight-bit equivalent of +15 is produced instead of −1. What went wrong is
that the sign bit did not get extended to the left of the result. This is not a prob-
lem for a positive result because the high order bits default to 0, producing the
correct sign bit 0.

A solution is shown in the right side of Figure 3-16, in which each partial prod-
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uct is extended to the width of the result, and only the rightmost eight bits of the
result are retained. If both operands are negative, then the signs are extended for
both operands, again retaining only the rightmost eight bits of the result.

Signed division is more difficult. We will not explore the methods here, but as a
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Figure 3-15    An example of division using the serial divider.
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general technique, we can convert the operands into their positive forms, per-
form the division, and then convert the result into its true signed form as a final
step.

3.4 Floating Point Arithmetic
Arithmetic operations on floating point numbers can be carried out using the
fixed point arithmetic operations described in the previous sections, with atten-
tion given to maintaining aspects of the floating point representation. In the sec-
tions that follow, we explore floating point arithmetic in base 2 and base 10,
keeping the requirements of the floating point representation in mind.

3.4.1 FLOATING POINT ADDITION AND SUBTRACTION

Floating point arithmetic differs from integer arithmetic in that exponents must
be handled as well as the magnitudes of the operands. As in ordinary base 10
arithmetic using scientific notation, the exponents of the operands must be made
equal for addition and subtraction. The fractions are then added or subtracted as
appropriate, and the result is normalized. 

This process of adjusting the fractional part, and also rounding the result can
lead to a loss of precision in the result. Consider the unsigned floating point
addition (.101 × 23 + .111 × 24) in which the fractions have three significant dig-
its. We start by adjusting the smaller exponent to be equal to the larger exponent,
and adjusting the fraction accordingly. Thus we have .101 × 23 = .010 × 24, los-
ing .001 × 23 of precision in the process. The resulting sum is

(.010 + .111) × 24 = 1.001 × 24 = .1001 × 25,

and rounding to three significant digits, .100 × 25, and we have lost another
0.001 × 24 in the rounding process.

Why do floating point numbers have such a complicated format?

We may wonder why floating point numbers have such a complicated structure,
with the mantissa being stored in signed magnitude representation, the exponent
stored in excess notation, and the sign bit separated from the rest of the magni-
tude by the intervening exponent field. There is a simple explanation for this
structure. Consider the complexity of performing floating point arithmetic in a
computer. Before any arithmetic can be done, the number must be unpacked
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from the form it takes in storage. (See Chapter 2 for a description of the IEEE
754 floating point format.) The exponent and mantissa must be extracted from
the packed bit pattern before an arithmetic operation can be performed; after the
arithmetic operation(s) are performed, the result must be renormalized and
rounded, and then the bit patterns are re-packed into the requisite format.

The virtue of a floating point format that contains a sign bit followed by an
exponent in excess notation, followed by the magnitude of the mantissa, is that
two floating point numbers can be compared for >, <, and = without unpacking.
The sign bit is most important in such a comparison, and it appropriately is the
MSB in the floating point format. Next most important in comparing two num-
bers is the exponent, since a change of ± 1 in the exponent changes the value by a
factor of 2 (for a base 2 format), whereas a change in even the MSB of the frac-
tional part will change the value of the floating point number by less than that.

In order to account for the sign bit, the signed magnitude fractions are repre-
sented as integers and are converted into two’s complement form. After the addi-
tion or subtraction operation takes place in two’s complement, there may be a
need to normalize the result and adjust the sign bit. The result is then converted
back to signed magnitude form.

3.4.2 FLOATING POINT MULTIPLICATION AND DIVISION

Floating point multiplication and division are performed in a manner similar to
floating point addition and subtraction, except that the sign, exponent, and frac-
tion of the result can be computed separately. If the operands have the same sign,
then the sign of the result is positive. Unlike signs produce a negative result. The
exponent of the result before normalization is obtained by adding the exponents
of the source operands for multiplication, or by subtracting the divisor exponent
from the dividend exponent for division. The fractions are multiplied or divided
according to the operation, followed by normalization.

Consider using three-bit fractions in performing the base 2 computation: (+.101
× 22) × (−.110 × 2-3). The source operand signs differ, which means that the
result will have a negative sign. We add exponents for multiplication, and so the
exponent of the result is 2 + −3 = −1. We multiply the fractions, which produces
the product .01111. Normalizing the product and retaining only three bits in the
fraction produces −.111 × 2−2.

Now consider using three-bit fractions in performing the base 2 computation:
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(+.110 × 25) / (+.100 × 24). The source operand signs are the same, which means
that the result will have a positive sign. We subtract exponents for division, and
so the exponent of the result is 5 – 4 = 1. We divide fractions, which can be done
in a number of ways. If we treat the fractions as unsigned integers, then we will
have 110/100 = 1 with a remainder of 10. What we really want is a contiguous
set of bits representing the fraction instead of a separate result and remainder,
and so we can scale the dividend to the left by two positions, producing the
result: 11000/100 = 110. We then scale the result to the right by two positions to
restore the original scale factor, producing 1.1. Putting it all together, the result
of dividing (+.110 × 25) by (+.100 × 24) produces (+1.10 × 21). After normaliza-
tion, the final result is (+.110 × 22).

3.5 High Performance Arithmetic
For many applications, the speed of arithmetic operations are the bottleneck to
performance. Most supercomputers, such as the Cray, the Tera, and the Intel
Hypercube are considered “super” because they excel at performing fixed and
floating point arithmetic. In this section we discuss a number of ways to improve
the speed of addition, subtraction, multiplication, and division.

3.5.1 HIGH PERFORMANCE ADDITION

The ripple-carry adder that we reviewed in Section 3.2.2  may introduce too
much delay into a system. The longest path through the adder is from the inputs
of the least significant full adder to the outputs of the most significant full adder.
The process of summing the inputs at each bit position is relatively fast (a small
two-level circuit suffices) but the carry propagation takes a long time to work its
way through the circuit. In fact, the propagation time is proportional to the
number of bits in the operands. This is unfortunate, since more significant fig-
ures in an addition translates to more time to perform the addition. In this sec-
tion, we look at a method of speeding the carry propagation in what is known as
a carry lookahead adder.

In Appendix B, reduced Boolean expressions for the sum (si) and carry outputs
(ci+1) of a full adder are created. These expressions are repeated below, with sub-
scripts added to denote the relative position of a full adder in a ripple-carry
adder:

si aibici aibici aibici aibici+ + +=



80 CHAPTER  3       ARITHMETIC

We can factor the second equation and obtain:

which can be rewritten as:

where: Gi = aibi   and   Pi = ai + bi.

The Gi and Pi terms are referred to as generate and propagate functions, respec-
tively, for the effect they have on the carry. When Gi = 1, a carry is generated at
stage i. When Pi = 1, then a carry is propagated through stage i if either ai or bi is
a 1. The Gi and Pi terms can be created in one level of logic since they only
depend on an AND or an OR of the input variables, respectively.

The carries again take the most time. The carry c1 out of stage 0 is G0 + P0c0, and
since c0 = 0 for addition, we can rewrite this as c1 = G0. The carry c2 out of stage
1 is G1 + P1c1, and since c1 = G0, we can rewrite this as: c2 = G1 + P1G0. The
carry c3 out of stage 2 is G2 + P2c2, and since c2 = G1 + P1G0, we can rewrite this
as: c3 = G2 + P2G1 + P2P1G0. Continuing one more time for a four-bit adder, the
carry out of stage 3 is G3 + P3c3, and since c3 = G2 + P2G1 + P2P1G00, we can
rewrite this as: c4 = G3 + P3G2 + P3P2G1 + P3P2P1G0.

We can now create a four-bit carry lookahead adder as shown in Figure 3-17. We
still have the delay through the full adders as before, but now the carry chain is
broken into independent pieces that require one gate delay for Gi and Pi and two
more gate delays to generate ci+1. Thus, a depth of three gate delays is added, but
the ripple-carry chain is removed. If we assume that each full adder introduces a
gate delay of two, then a four-bit carry lookahead adder will have a maximum
gate delay of five, whereas a four-bit ripple-carry adder will have a maximum gate
delay of eight. The difference between the two approaches is more pronounced
for wider operands. This process is limited to about eight bits of carry-lookahead,
because of gate fanin limitations discussed in Appendix A. For additions of num-
bers having more than eight bits, the carry-lookahead circuits can be cascaded to
compute the carry in and carry out of each carry-lookahead unit. (See the
EXAMPLE at the end of the chapter.)

ci 1+ bici aici aibi+ +=

ci 1+ aibi ai bi+( )ci+=

ci 1+ Gi Pici+=
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3.5.2 HIGH PERFORMANCE MULTIPLICATION

A number of methods exist for speeding the process of multiplication. Two
methods are described in the sections below. The first approach gains perfor-
mance by skipping over blocks of 1’s, which eliminates addition steps. A parallel
multiplier is described next, in which a cross product among all pairs of multi-
plier and multiplicand bits is formed. The result of the cross product is summed
by rows to produce the final product. 

The Booth Algorithm

The Booth algorithm treats positive and negative numbers uniformly. It operates
on the fact that strings of 0’s or 1’s in the multiplier require no additions – just
shifting. Additions or subtractions take place at the boundaries of the strings,
where transitions take place from 0 to 1 or from 1 to 0. A string of 1’s in the mul-
tiplier from bit positions with weights 2u to 2v can be treated as 2u+1 – 2v. For
example, if the multiplier is 001110 (+14)10, then u = 3 and v = 1, so 24 – 21 =
14.

Full
adder

s0

Full
adder

s1

Full
adder

s2

Full
adder

s3

0
c0

b3 a3b3 a3 b2 a2 b1 a1 b0 a0

G0P1G1P2G2

c1c2c3

P3G3

c4

Figure 3-17    Carry-lookahead adder.
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In a hardware implementation, the multiplier is scanned from right to left. The
first transition is observed going from 0 to 1, and so 21 is subtracted from the ini-
tial value (0). On the next transition, from 1 to 0, 24 is added, which results in
+14. A 0 is considered to be appended to the right side of the multiplier in order
to define the situation in which a 1 is in the rightmost digit of the multiplier.

If the multiplier is recoded according to the Booth algorithm, then fewer steps
may be needed in the multiplication process. Consider the multiplication exam-
ple shown in Figure 3-18. The multiplier (14)10 contains three 1’s, which means

that three addition operations are required for the shift/add multiplication proce-
dure that is described in Section 3.3.1. The Booth recoded multiplier is obtained
by scanning the original multiplier from right to left, and placing a −1 in the
position where the first 1 in a string is encountered, and placing a +1 in the posi-
tion where the next 0 is seen. The multiplier 001110 thus becomes 0 +1 0 0 −1
0. The Booth recoded multiplier contains just two nonzero digits: +1 and −1,
which means that only one addition operation and one subtraction operation are
needed, and so a savings is realized for this example.

A savings is not always realized, however, and in some cases the Booth algorithm
may cause more operations to take place than if it is not used at all. Consider the
example shown in Figure 3-19, in which the multiplier consists of alternating 1’s
and 0’s. This is the same example shown in Figure 3-18 but with the multipli-
cand and multiplier swapped. Without Booth recoding of the multiplier, three
addition operations are required for the three 1’s in the multiplier. The Booth
recoded multiplier, however, requires six addition and subtraction operations,
which is clearly worse. We improve on this in the next section.

0 1 0 1

1 1 1 0

1 0 1 1

1

(14)10

(21)10 Multiplicand

Multiplier

(294)10 Product

1

0

0

0

0

1

0 0 −1 0× Booth recoded 
multiplier

+10

Shift
Add

Shift
Subtract

Shift

1111

01010

0 0 1 11001000

(−21 × 2)10

(21 × 16)10

1

00

0

0

0

000

Figure 3-18    Multiplication of signed integers.
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The Modified Booth Algorithm

One solution to this problem is to group the recoded multiplier bits in pairs,
known as bit pair recoding, which is also known as the modified Booth algo-
rithm. Grouping bit pairs from right to left produces three “+1,−1” pairs as
shown in Figure 3-20. Since the +1 term is to the left of the −1 term, it has a

weight that is twice as large as the weight for the −1 position. Thus, we might
think of the pair as having the collective value +2 – 1 = +1.

In a similar manner, the pair −1,+1 is equivalent to −2 + 1 = −1. The pairs +1,+1
and −1,−1 cannot occur. There are a total of seven pairs that can occur, which are
shown in Figure 3-21. For each case, the value of the recoded bit pair is multi-

1 1 1 0

0 1 0 1

1 0 0 1

1

(21)10

(14)10 Multiplicand

Multiplier

(294)10 Product

0

1

1

0

0

1

+1 −1 +1 −1× Booth recoded 
multiplier

−1+1

Add
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0 0 1 11001000

(−14 × 1)10

(14 × 2)10

1

00

0

0

0

011

1 0 0 1

1

11111

00000 0

0

011

1 0 0 1

1

111

000 0

0

011 0

0

0

0

0

0

0

0

0

0

0

0 (−14 × 4)10

(14 × 8)10

(−14 × 16)10

(14 × 32)10

Figure 3-19    A worst case Booth recoded multiplication example.
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+1 −1 +1 −1× Booth recoded multiplier−1+1

00000

0 0 1 11001000
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Bit pair recoded multiplier+1 +1+1

Figure 3-20    Multiplication with bit-pair recoding of the multiplier.
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plied by the multiplicand and is added to the product. In an implementation of
bit pair recoding, the Booth recoding and bit pair recoding steps are collapsed
into a single step, by observing three multiplier bits at a time, as shown in the
corresponding multiplier bit table.

The process of bit pair recoding of a multiplier guarantees that in the worst case,
only w/2 additions (or subtractions) will take place for a w-bit multiplier.

Array Multipliers

The serial method we used for multiplying two unsigned integers in Section
3.2.1 requires only a small amount of hardware, but the time required to multi-
ply two numbers of length w grows as w2. We can speed the multiplication pro-
cess so that it completes in just 2w steps by implementing the manual process
shown in Figure 3-10 in parallel. The general idea is to form a one-bit product
between each multiplier bit and each multiplicand bit, and then sum each row of
partial product elements from the top to the bottom in systolic (row by row)
fashion.

The structure of a systolic array multiplier is shown in Figure 3-22. A partial
product (PP) element is shown at the bottom of the figure. A multiplicand bit
(mi) and a multiplier bit (qj) are multiplied by the AND gate, which forms a par-
tial product at position (i,j) in the array. This partial product is added with the
partial product from the previous stage (bj) and any carry that is generated in the
previous stage (aj). The result has a width of 2w, and appears at the bottom of the
array (the high order w bits) and at the right of the array (the low order w bits).
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Figure 3-21    Recoded bit pairs.
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3.5.3 HIGH PERFORMANCE DIVISION

We can extend the unsigned integer division technique of Section 3.3.2 to pro-
duce a fractional result in computing a/b. The general idea is to scale a and b to
look like integers, perform the division process, and then scale the quotient to

. . .
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0 0 0 0 0 0 0 0
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PP 0,w PP 0,2 PP 0,1 PP0,0
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w+1,0w+1,1w+1,2w+1,wPP PP PP PP

Figure 3-22    Parallel pipelined array multiplier.
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correspond to the actual result of dividing a by b.

A faster method of division makes use of a lookup table and iteration. An itera-
tive method of finding a root of a polynomial is called Newton’s iteration, which
is illustrated in Figure 3-23. The goal is to find where the function f(x) crosses the

x axis by starting with a guess xi and then using the error between f(xi) and zero
to refine the guess.

The tangent line at f(xi) can be represented by the equation:

y − f(xi) = f ’(xi)(x − xi).

The tangent line crosses the x axis at:

The process repeats while f(x) approaches zero.

The number of bits of precision doubles on each iteration (see [Goldberg,
1990]), and so if we are looking to obtain 32 bits of precision and we start with a
single bit of precision, then five iterations are required to reach our target preci-
sion. The problem now is to cast division in the form of finding a zero for f(x).

Consider the function 1/x − b which has a zero at 1/b. If we start with b, then we
can compute 1/b by iteratively applying Newton’s method. Since f ’(x) = −1/x2,

f(x)

x
xi+1x i

Figure 3-23    Newton’s iteration for zero finding. Adapted from [Goldberg, 1990].

xi 1+ xi
f xi( )
f ′ xi( )
--------------–=
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we now have:

Thus, we only need to perform multiplication and subtraction in order to per-
form division. Further, if our initial guess for x0 is good enough, then we may
only need to perform the iteration a few times.

Before using this method on an example, we need to consider how we will obtain
our initial guess. If we are working with normalized fractions, then it is relatively
easy to make use of a lookup table for the first few digits. Consider computing
1/.101101 using a 16-bit normalized base 2 fraction in which the leading 1 is not
hidden. The first three bits for any binary fraction will be one of the patterns:
.100, .101, .110, or .111. These fractions correspond to the base 10 numbers
1/2, 5/8, 3/4, and 7/8, respectively. The reciprocals of these numbers are 2, 8/5,
4/3, and 8/7, respectively. We can store the binary equivalents in a lookup table,
and then retrieve x0 based on the first three bits of b.

The leading 1 in the fraction does not contribute to the precision, and so the
leading three bits of the fraction only provide two bits of precision. Thus, the
lookup table only needs two bits for each entry, as shown in Figure 3-24.

Now consider computing 1/.1011011 using this floating point representation.
We start by finding x0 using the table shown in Figure 3-24. The first three bits
of the fraction b are 101, which corresponds to x0 = 01. We compute x1 = x0(2 −
x0b) and obtain, in unsigned base 2 arithmetic: x1 = 01(10 − (01)(.1011011)) =
1.0100101. Our two bits of precision have now become four bits of precision.
For this example, we will retain as much intermediate precision as we can. In
general, we only need to retain at most 2p bits of intermediate precision for a
p-bit result. We iterate again, obtaining eight bits of precision:

xi 1+ xi
1 xi⁄ b–

1 xi
2⁄–

--------------------– xi xi xi
2–+ b xi 2 xib–( )= = =

.100 2 10

B = First three 
bits of b

Corresponding 
lookup table entry

Actual base 10 
value of 1/B

.101 1 3/5 01

.110 1 1/3 01

.111 1 1/7 01

Figure 3-24    A three-bit lookup table for computing x0.
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x2 = x1(2 − x1b) = 1.0100101(10 − (1.0100101)(.1011011)) 

= 1.011001011001001011101.

We iterate again, obtaining our target 16 bits of precision:

x3 = x2(2 − x2b) = (1.011001011001001011101)(2 −

 (1.011001011001001011101)(.1011011)) = 1.011010000001001 

= (1.40652466)10. The precise value is (1.40659341)10, but our 16-bit value is
as close to the precise value as it can be.

3.5.4 RESIDUE ARITHMETIC

Addition, subtraction, and multiplication can all be performed in a single, carry-
less step using residue arithmetic. The residue number system is based on rela-
tively prime integers called moduli. The residue of an integer with respect to a
particular modulus is the least positive integer remainder of the division of the
integer by the modulus. A set of possible moduli are 5, 7, 9, and 4. With these
moduli, 5 × 7 × 9 × 4 = 1260 integers can be uniquely represented. A table show-
ing the representation of the first twenty decimal integers using moduli 5, 7, 9,
and 4 is shown in Figure 3-25.

Addition and multiplication in the residue number system result in valid residue
numbers, provided the size of the chosen number space is large enough to con-

Decimal Residue Decimal Residue
5794

0 0000 10 0312

5794

1 1111 11 1423
2 2222 12 2530
3 3333 13 3641
4 4440 14 4052
5 0551 15 0163
6 1662 16 1270
7 2073 17 2381
8 3180 18 3402
9 4201 19 4513

Figure 3-25    Representation of the first twenty decimal integers in the residue number system for

the given moduli.
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tain the results. Subtraction requires each residue digit of the subtrahend to be
complemented with respect to its modulus before performing addition. Addition
and multiplication examples are shown in Figure 3-26. For these examples, the

moduli used are 5, 7, 9, and 4. Addition is performed in parallel for each col-
umn, with no carry propagation. Multiplication is also performed in parallel for
each column, independent of the other columns.

Although residue arithmetic operations can be very fast, there are a number of
disadvantages to the system. Division and sign detection are difficult, and a rep-
resentation for fractions is also difficult. Conversions between the residue num-
ber system and weighted number systems are complex, and often require
involved methods such as the Chinese remainder theorem. The conversion
problem is important because the residue number system is not very useful with-
out being translated to a weighted number system so that magnitude compari-
sons can be made. However, for integer applications in which the time spent in
addition, subtraction, and multiplication outweighs the time spent in division,
conversion, etc., the residue number system may be a practical approach. An
important application area is matrix-vector multiplication, which is used exten-
sively in signal processing.

EXAMPLE: WIDE WORD HIGH PERFORMANCE 
ADDER

A practical word width for a carry lookahead adder (CLA) is four bits, whereas a
16-bit word width is not as practical because of the large fan-ins and fan-outs of
the internal logic. We can subdivide a 16-bit addition problem into four 4-bit
groups in which carry lookahead is used within the groups, and in which carry
lookahead is also used among the groups. This organization is referred to as a
group carry lookahead adder (GCLA). For this example, we will compare a

Decimal Residue
5794

29 4121
27 2603
56 1020

29 + 27 = 56

Decimal Residue
5794

10 0312
17 2381

170 0282

10 × 17 = 170

Figure 3-26    Examples of addition and multiplication in the residue number system.
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16-bit CLA with a 16-bit GCLA in terms of gate delays, fan-ins, and fan-outs.

Figure 3-27 shows a 16-bit GCLA that is composed of four 4-bit CLAs, with

some additional logic that generates the carries between the four-bit groups.
Each group behaves as an ordinary CLA, except that the least significant carry
into each CLA is treated as a variable instead of as a 0, and that group generate
(GG) and group propagate (GP) signals are generated. A GG signal is generated
when a carry is generated somewhere within a group, and all of the more signifi-
cant propagate signals are true. This means that a carry into a group will propa-
gate all the way through the group. The corresponding equations for the least
significant GG and GP signals in Figure 3-27 are shown below:

GG0 = G3 + P3G2 + P3P2G1 + P3P2P1G0

GP0 = P3P2P1P0

The remaining GG and GP signals are computed similarly.

The carry into each group, except for the carry into CLA0, is computed from the
GG and GP signals. For example, c4 is true when GG0 is true or when GP0 and
c0 are both true. The corresponding equation is:

c4 = GG0 + GP0c0.

c16
Group Carry Lookahead Logic

CLA0

4

a0 – a3

4

b0 – b3

4

s0 – s3

GG0GP0

CLA1

4

a4 – a7

4

b4 – b7

4

s4 – s7

GG1GP1

CLA2

4

a8 – a11

4

b8 – b11

4

s8 – s11

GG2GP2

CLA3

4

a12 – a15

4

b12 – b15

4

s12 – s15

GG3GP3

c4c8c12

c0

Figure 3-27    A 16-bit group carry lookahead adder.
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Higher order carries out of each group are computed in a similar manner:

c8 = GG1 + GP1c4 = GG1 + GP1GG0 + GP1GP0c0.

c12 = GG2 + GP2c8 = GG2 + GP2GG1 + GP2GP1GG0 + 

GP2GP1GP0c0.

c16 = GG3 + GP3c12 = GG3 + GP3GG2 + GP3GP2GG1 +

GP3GP2GP1GG0 + GP3GP2GP1GP0c0.

In terms of gate delays, a 16-bit CLA has a longest path of five gate delays to pro-
duce the most significant sum bit, as discussed in Section 3.5.1. Each of the
CLAs in the 16-bit GCLA also has at least five gate delays on the longest path.
The GG and GP signals are generated in three gate delays, and the carry signals
out of each group are generated in two more gate delays, resulting in a total of
five gate delays to generate the carry out of each group. In the highest bit posi-
tion (s15), five gate delays are needed to generate c12, and another five gate delays
are needed to generate s15, for a worst case path of 10 gate delays through the
16-bit GCLA.

With regard to fan-in and fan-out, the maximum fan-in of any gate in a four-bit
CLA is four (refer to Figure 3-17), and in general, the maximum fan-in of any
gate in an n-bit CLA is n. Thus, the maximum fan-in of any gate in a 16-bit
CLA is 16. In comparison, the maximum fan-in for a 16-bit GCLA is five (for
generating c16). The fan-outs for both cases are the same as the fan-ins.

In summary, the 16-bit CLA has only half of the depth of the 16-bit GCLA (five
gate delays vs. 10 gate delays). The highest fan-in for a 16-bit CLA is 16, which is
more than three times the highest fan-in for a 16-bit GCLA (16 vs. five). The
highest fan-outs are the same as the highest fan-ins for each case. ■

3.6 Case Study: Calculator Arithmetic Using Binary Coded Decimal
Calculator arithmetic has traditionally been done in base 10, rather than in base
2. Calculators need to be small and inexpensive, and for that reason base 10
numbers are represented in binary coded decimal (BCD – see Chapter 2) using 4
bits per BCD digit, instead of using base 2 which would require a somewhat
resource-intensive base conversion. A small 4-bit ALU can then do the computa-
tions in serial fashion, BCD digit by BCD digit.
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3.6.1 THE HP9100A CALCULATOR

The popular HP9100A calculator, which came out in the late 1960’s, performed
the basic arithmetic functions: addition, subtraction, multiplication, and divi-
sion, as well as square root, ex, ln x, log x, trigonometric functions, and other
functions, all using base 10 arithmetic. The HP9100A is actually a desktop cal-
culator (see Figure 3-28), but was considered small for what it accomplished with

the technology of the day. The HP9100 display shows 10 significant digits, but
all calculations are performed to 12 significant digits, with the two last significant
digits (which are known as guard digits) being used for truncation and
round-off errors. Although the HP9100A may seem like a relic today, the arith-
metic methods are still relevant.

The next two sections describe general techniques for performing fixed point and
floating point BCD addition and subtraction. Other calculator operations
described in the remaining sections are performed in a similar manner, making
use of the addition and subtraction operations.

3.6.2 BINARY CODED DECIMAL ADDITION AND SUBTRACTION

Consider adding (+255)10 and (+63)10 in BCD representation, as illustrated in
Figure 3-29. Each base 10 digit occupies four bit positions, and addition is per-
formed on a BCD digit by BCD digit basis (not bit by bit), from right to left, as
we would normally carry it out by hand using a decimal representation. The
result, (+318)10, is produced in BCD form as shown.

Figure 3-28    HP 9100 series desktop calculator. [Source: http://www.teleport.com/

~dgh/91003q.jpg.]
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Subtraction in BCD is handled similar to the way subtraction is handled in two’s
complement (adding the negative of the subtrahend) except that ten’s comple-
ment is used instead of two’s complement. Consider performing the subtraction
operation (255 − 63 = 192)10. We can cast this into the addition problem (255 +
(−63) = 192)10. We start by forming the nine’s complement of 63:

We then add 1 in order to form the 10’s complement:

The addition operation can now be performed, as shown in Figure 3-30. Notice

that the carry out of the highest digit position is discarded, as in two’s comple-
ment addition.

0 0 0 0

(0)10

0 0 1 0

(2)10

0 1 0 1

(5)10

0 1 0 1

(5)10

(+255)10

0 0 0 0

(0)10

0 0 0 0

(0)10

0 1 1 0

(6)10

0 0 1 1

(3)10

(+63)10+

0 0 0 0

(0)10

0 0 1 1

(3)10

0 0 0 1

(1)10

1 0 0 0

(8)10

(+318)10

0 1 0 0 Carries

Figure 3-29    An addition example using binary coded decimal.

9 9 9 9
0 0 6 3

9 9 3 6

−

9 9 3 6
0 0 0 1

9 9 3 7

+

0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 (+255)10

1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 (−63)10+

0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 (+192)10

1 0 1 0 Carries1

1

Discard carry

Figure 3-30    BCD addition in ten’s complement.
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Unlike the two’s complement representation, we cannot simply look at the left-
most bit to determine the sign. In ten’s complement, the number is positive if the
leftmost digit is between 0 and 4, inclusive, and is negative otherwise. (The BCD
bit patterns for 4 and 5 are 0100 and 0101, respectively, which both have a 0 in
the leftmost bit, yet 4 indicates a positive number and 5 indicates a negative
number.) If we use an excess 3 encoding for each digit, then the leftmost bit will
indicate the sign. Figure 3-31 shows the encoding. Notice that six of the bit pat-

terns cannot occur, and so they are marked as don’t cares, ‘d’.

Now consider the design of a BCD full adder. The BCD full adder should sum
two BCD digits and a carry-in, and should produce a sum BCD digit and a
carry-out, all using excess 3. A design using two’s complement full adders is
shown in Figure 3-32. The excess 3 BCD digits are added in the upper four two’s
complement full adders (FAs). Since each operand is represented in excess 3, the
result is in excess 6. In order to restore the result to excess 3, we need to subtract
3 from the result. As an alternative, we can add 13 to the result since 16 − 3 = 16
+ 13 in a four-bit representation, discarding the carry out of the highest bit posi-
tion. The latter approach is used in Figure 3-32, in which 1310 = 11012 is added
to the result. Note that this only works if there is no carry. When there is a carry,
then we need to also subtract 10 (or equivalently, add 6) from the result, besides
subtracting 3 (or adding 13) to restore the excess 3 representation, and produce a

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
1
2
3
4
5
6
7
8
9
d
d
d
d
d
d

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

BCD Bit 
Pattern

Normal BCD 
value

Positive 
numbers

d
d
d
0
1
2
3
4
5
6
7
8
9
d
d
d

Excess 3 
value

Negative 
numbers

Figure 3-31    Excess 3 encoding of BCD digits.
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carry out. The approach taken here is to add 310 = 00112 for this situation,
which has the same effect as adding (6 + 13) % 16 = 3, as shown in Figure 3-32.

In order to perform BCD subtraction, we can create a ten’s complement subtrac-
tor using base 10 full subtractors, as we did for the two’s complement subtractor
described in Section 3.2.2. Alternatively, we can form the ten’s complement neg-
ative of the subtrahend, and then apply ordinary BCD addition. Figure 3-33

shows the computation (21 − 34 = −13)10 using the latter subtraction method
for four-digit numbers. The ten’s complement negative of 34 is added to 21,
which results in 9987 in ten’s complement, which is (−13)10 in signed magni-
tude.

3.6.3 BCD FLOATING POINT ADDITION AND SUBTRACTION

Consider a base 10 floating point representation with a two digit signed magni-

Full
adder

b0 a0

Full
adder

b1 a1

Full
adder

b2 a2

Full
adder

b3 a3

c4

0
c0

Full
adder

s0

Full
adder

s1

Full
adder

s2

Full
adder

s3

01

Figure 3-32    A BCD full adder.
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0

9

9

0

9

9

2

6

8

1

6

7

Ten’s Complement

 

−
−

0

0

0

0

0

0

2

3

1

1

4

3

Signed Magnitude

Figure 3-33    The computation (21 − 34 = −13)10 in ten’s complement and signed magnitude.
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tude exponent and an eight digit signed magnitude fraction. On a calculator, a
sample entry might look like:

−.37100000 × 10−12

which is in normalized form.

Now how is the number stored? A calculator user sees signed magnitude for both
the exponent and the fraction, but internally, we might use a ten’s complement
representation for both the exponent and the fraction. For the case above, the
representation using ten’s complement would be: 88 for the exponent, and
62900000 for the fraction. Using an excess 3 representation in binary results in
an exponent of 1011 1011 and a fraction of 1001 0101 1100 0011 0011 0011
0011 0011. Note that since we are using the leftmost bit for the sign, that the
exponent range is [−50 to +49] and that the fraction range is [−.50000000 to
+.49999999]. 

If we now try to represent +.9 in base 10, then we are again stuck because the
leftmost bit of the fraction is used for a sign bit. That is, we cannot use 1100 in
the most significant digit of the fraction, because although that is the excess 3
representation of 9, it makes the fraction appear negative. Here is a better solu-
tion: Just use ten’s complement for base 10 integer arithmetic, such as for expo-
nents, and use signed magnitude for fractions.

Here is the summary thus far: we use a ten’s complement representation for the
exponent since it is an integer, and we use a base 10 signed magnitude represen-
tation for the fraction. A separate sign bit is maintained for the fraction, so that
each digit can take on any of the 10 values 0–9 (except for the first digit, which
cannot be a zero) and so we can now represent +.9. We should also represent the
exponent in excess 50 to make comparisons easier. The example above now looks
like this internally, still in excess 3 binary form, with a two digit excess 50 expo-
nent:

Sign bit: 1

Exponent: 0110 1011

Fraction: 0110 1010 0100 0011 0011 0011 0011 0011 0011
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In order to add two numbers in this representation, we just go through the same
steps that we did for the base 2 floating point representation described earlier. We
start by adjusting the exponent and fraction of the smaller operand until the
exponents of both operands are the same. If the difference in exponents is so
great that the fraction of the smaller operand is shifted all the way to the right,
then the smaller operand is treated as 0. After adjusting the smaller fraction, we
convert either or both operands from signed magnitude to ten’s complement
according to whether we are adding or subtracting, and whether the operands are
positive or negative. Note that this will work now because we can treat the frac-
tions as integers.

■ SUMMARY

Computer arithmetic can be carried out as we normally carry out decimal arith-
metic by hand, while taking the base into account. A two’s complement or a ten’s
complement representation is normally used for integers, whereas signed magni-
tude is normally used for fractions due to the difficulty of manipulating positive
and negative fractions in a uniform manner.

Performance can be improved by skipping over 1’s in the Booth and bit-pair
recoding techniques. An alternative method of improving performance is to use
carryless addition, such as in residue arithmetic. Although carryless addition may
be the fastest approach in terms of time complexity and circuit complexity, the
more common weighted position codes are normally used in practice in order to
simplify comparisons and represent fractions.

■ FURTHER READING
(Goldberg, 1990) is a concise but thorough source of numerous aspects of com-
puter arithmetic. (Hamacher et al., 1990) provides a classic treatment of integer
arithmetic. (Flynn, 1970) gives an early treatment of division by zero finding.
(Garner, 1959) gives a complete description of the residue number system,
whereas (Koren, 1993) gives a more tutorial treatment of the subject. (Huang
and Goodman, 1979) describes how a memory based residue processor can be
constructed. Koren (1993) also provides additional details on cascading
carry-lookahead units. (Cochran, 1968) is a good source for the programming of
the HP9100A calculator.
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■ PROBLEMS
3.1 Show the results of adding the following pairs of five-bit (i.e. one sign bit

and four data bits) two’s complement numbers and indicate whether or not
overflow occurs for each case:

3.2 One way to determine that overflow has occurred when adding two num-
bers is to detect that the result of adding two positive numbers is negative, or
that the result of adding two negative numbers is positive. The overflow rules
are different for subtraction: there is overflow if the result of subtracting a neg-
ative number from a positive number is negative or the result of subtratcing a
positive number from a negative number is positive. 

1 0 1 1 0
1 0 1 1 1+

1 1 1 1 0
1 1 1 0 1+

1 1 1 1 1
0 1 1 1 1+
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Subtract the numbers shown below and determine whether or not an overflow
has occured. Do not form the two’s complement of the subtrahend and add:
perform the subtraction bit by bit, showing the borrows generated at each
position:

- 0 1 0 1
- 0 1 1 0
__________

3.3 Add the following two’s complement and one’s complement binary num-
bers as indicated. For each case, indicate if there is overflow.

Two’s complement One’s complement
+ 1 0 1 1.1 0 1 + 1 0 1 1.1 0 1
+ 0 1 1 1.0 1 1 + 0 1 1 1.0 1 1
_______________ _______________

3.4 Show the process of serial unsigned multiplication for 1010 (multipli-
cand) multiplied by 0101 (multiplier). Use the form shown in Figure 3-12.

3.5 Show the process of serial unsigned multiplication for 11.1 (multiplicand)
multiplied by 01.1 (multiplier) by treating the operands as integers. The result
should be 101.01.

3.6 Show the process of serial unsigned division for 1010 divided by 0101.
Use the form shown in Figure 3-15.

3.7 Show the process of serial unsigned division for 1010 divided by 0100,
but instead of generating a remainder, compute the fraction by continuing the
process. That is, the result should be 10.12.

3.8 The equation used in Section 3.5.1 for c4 in a carry lookahead adder
assumes that c0 is 0 for addition. If we perform subtraction by using the addi-
tion / subtraction unit shown in Figure 3-6, then c0 = 1. Rewrite the equation
for c4 when c0 = 1.
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3.9 The 16-bit adder shown below uses a ripple carry among four-bit carry
lookahead adders.

(a) What is the longest gate delay through this adder?

(b) What is the shortest gate delay through this adder, from any input to any
output?

3.10 Use the Booth algorithm (not bit pair recoding) to multiply 010011
(multiplicand) by 011011 (multiplier).

3.11 Use bit pair recoding to multiply 010011 (multiplicand) by 011011 (mul-
tiplier).

3.12 Compute the maximum gate delay through a 32-bit carry lookahead
adder.

3.13 What is the maximum number of inputs for any logic gate in a 32-bit
carry lookahead adder, using the scheme described in this chapter?

3.14 In a carry-select adder a carry is propagated from one adder stage to the
next, similar to but not exactly the same as a carry lookahead adder. As with
many other adders, the carry out of a carry-select adder stage is either 0 or 1.
In a carry-select adder, two sums are computed in parallel for each adder stage:
one sum assumes a carry-in of 0, and the other sum assumes a carry-in of 1.
The actual carry-in selects which of the two sums to use (with a MUX, for

Carry 
Lookahead 

Adder (CLA)

4

a15 ... a12

4

b15 ... b12 c12

4

s15 ... s12

Carry 
Lookahead 

Adder (CLA)

4

a11 ... a8

4

b11 ... b8 c8

4

s11 ... s8

Carry 
Lookahead 

Adder (CLA)

4

a7 ... a4

4

b7 ... b4 c4

4

s7 ... s4

Carry 
Lookahead 

Adder (CLA)

4

a3 ... a0

4

b3 ... b0

c0 = 0

4

s3 ... s0

c16
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example). The basic layout is shown below for an eight-bit carry-select adder: 

Assume that each four-bit adder (FBA) unit uses carry lookahead internally.
Compare the number of gate delays needed to add two eight-bit numbers
using FBA units in a carry-select configuration vs. using FBA units in which
the carry is rippled from one FBA to the next.

(a) Draw a diagram of a functionally equivalent eight-bit carry lookahead con-
figuration using the FBAs shown above.

(b) Show the number of gate delays for each adder configuration., by both the
8-bit carry-select adder shown above and the adder designed in part (a) above.

3.15 The path with the maximum gate delay through the array multiplier
shown in Figure 3-22 starts in the top right PP element, then travels to the
bottom row, then across to the left. The maximum gate delay through a PP
element is three. How many gate delays are on the maximum gate delay path
through an array multiplier that produces a p-bit result?

3.16 Given multiplication units that each produce a 16-bit unsigned product
on two unsigned 8-bit inputs, and 16-bit adders that produce a 16-bit sum
and a carry-out on two 16-bit inputs and a carry-in, connect these units so
that the overall unit multiplies 16-bit unsigned numbers, producing a 32-bit
result.

3.17 Using Newton’s iteration for division, we would like to obtain 32 bits of
precision. If we use a lookup table that provides eight bits of precision for the

b0 a0b1 a1b2 a2b3 a3

c4

0
c0

Four-Bit Adder (FBA)

b4 a4

s4

b5 a5

s5

b6 a6

s6

b7 a7

s7

0

Four-Bit Adder (FBA)

b4 a4

s4

b5 a5

s5

b6 a6

s6

b7 a7

s7

1

Four-Bit Adder (FBA)

c8c8

c8

10-to-5 MUX c4 = 0c4 = 1

s0s1s2s3s4s5s6s7
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initial guess, how many iterations need to be applied?

3.18 Add (641)10 to (259)10 in unsigned BCD, using as few digits in the result
as necessary.

3.19 Add (123)10 and (−178)10 in signed BCD, using four digit words.


