

CHAPTER 1 INTRODUCTION

1

INTRODUCTION

 1

1.1 Overview

Computer

architecture

 deals with the functional behavior of a computer system
as viewed by a programmer. This view includes aspects such as the sizes of data
types (

e.g.

 using 16 binary digits to represent an integer), and the types of opera-
tions that are supported (like addition, subtraction, and subroutine calls). Com-
puter

organization

 deals with structural relationships that are not visible to the
programmer, such as interfaces to peripheral devices, the clock frequency, and
the technology used for the memory. This textbook deals with both architecture
and organization, with the term “architecture” referring broadly to both architec-
ture and organization.

There is a concept of

levels

 in computer architecture. The basic idea is that there
are many levels, or views, at which a computer can be considered, from the high-
est level, where the user is running programs, or

using

 the computer, to the low-
est level, consisting of transistors and wires. Between the high and low levels are a
number of intermediate levels. Before we discuss those levels we will present a
brief history of computing in order to gain a perspective on how it all came
about.

1.2 A Brief History

Mechanical devices for controlling complex operations have been in existence
since at least the 1500’s, when rotating pegged cylinders were used in music
boxes much as they are today. Machines that perform calculations, as opposed to
simply repeating a predetermined melody, came in the next century.

Blaise Pascal (1623 – 1662) developed a mechanical calculator to help in his
father’s tax work. The Pascal calculator “Pascaline” contains eight dials that con-

2

CHAPTER 1 INTRODUCTION

nect to a drum (Figure 1-1), with an innovative linkage that causes a dial to

rotate one notch when a carry is produced from a dial in a lower position. A win-
dow is placed over the dial to allow its position to be observed, much like the
odometer in a car except that the dials are positioned horizontally, like a rotary
telephone dial. Some of Pascal’s adding machines, which he started to build in
1642, still exist today. It would not be until the 1800’s, however, until someone
would put the concepts of mechanical control and mechanical calculation
together into a machine that we recognize today as having the basic parts of a
digital computer. That person was Charles Babbage.

Charles Babbage (1791 – 1871) is sometimes referred to as the

grandfather

 of the
computer, rather than the father of the computer, because he never built a practi-
cal version of the machines he designed. Babbage lived in England at a time
when mathematical tables were used in navigation and scientific work. The tables
were computed manually, and as a result, they contained numerous errors. Frus-
trated by the inaccuracies, Babbage set out to create a machine that would com-
pute tables by simply setting and turning gears. The machine he designed could
even produce a plate to be used by a printer, thus eliminating errors that might
be introduced by a typesetter.

Babbage’s machines had a means for reading input data, storing data, performing
calculations, producing output data, and automatically controlling the operation
of the machine. These are basic functions that are found in nearly every modern
computer. Babbage created a small prototype of his

difference engine

, which
evaluates polynomials using the method of finite differences. The success of the

Figure 1-1 Pascal’s calculating machine (Reproduced from an IBM Archives photograph.)

CHAPTER 1 INTRODUCTION

3

difference engine concept gained him government support for the much larger

analytical engine

, which was a more sophisticated machine that had a mecha-
nism for

branching

 (making decisions) and a means for programming, using
punched cards in the manner of what is known as the

Jacquard pattern-weav-
ing loom

.

The analytical engine was designed, but was never built by Babbage because the
mechanical tolerances required by the design could not be met with the technol-
ogy of the day. A version of Babbage’s difference engine was actually built by the
Science Museum in London in 1991, and can still be viewed today.

It took over a century, until the start of World War II, before the next major
thrust in computing was initiated. In England, German

U-boat

 submarines were
inflicting heavy damage on Allied shipping. The U-boats received communica-
tions from their bases in Germany using an encryption code, which was imple-
mented by a machine made by Siemens AG known as

ENIGMA

.

The process of encrypting information had been known for a long time, and
even the United States president Thomas Jefferson (1743 – 1826) designed a
forerunner of ENIGMA, though he did not construct the machine. The process
of decoding encrypted data was a much harder task. It was this problem that
prompted the efforts of Alan Turing (1912 – 1954), and other scientists in
England in creating codebreaking machines. During World War II, Turing was
the leading cryptographer in England and was among those who changed cryp-
tography from a subject for people who deciphered ancient languages to a subject
for mathematicians.

The

Colossus

 was a successful codebreaking machine that came out of Bletchley
Park, England, where Turing worked. Vacuum tubes store the contents of a paper
tape that is fed into the machine, and computations take place among the vac-
uum tubes and a second tape that is fed into the machine. Programming is per-
formed with plugboards. Turing’s involvement in the various Collosi machine
versions remains obscure due to the secrecy that surrounds the project, but some
aspects of his work and his life can be seen in the Broadway play

Breaking the
Code

 which was performed in London and New York in the late 1980’s.

Around the same time as Turing’s efforts, J. Prespert Eckert and John Mauchly
set out to create a machine that could be used to compute tables of ballistic tra-
jectories for the U.S. Army. The result of the Eckert-Mauchly effort was the Elec-
tronic Numerical Integrator And Computer (

ENIAC

). The ENIAC consists of

4

CHAPTER 1 INTRODUCTION

18,000 vacuum tubes, which make up the computing section of the machine.
Programming and data entry are performed by setting switches and changing
cables. There is no concept of a stored program, and there is no central memory
unit, but these are not serious limitations because all that the ENIAC needed to
do was to compute ballistic trajectories. Even though it did not become opera-
tional until 1946, after the War was over, it was considered quite a success, and
was used for nine years.

After the success of ENIAC, Eckert and Mauchly, who were at the Moore School
at the University of Pennsylvania, were joined by John von Neumann (1903 –
1957), who was at the Institute for Advanced Study at Princeton. Together, they
worked on the design of a stored program computer called the

EDVAC

. A con-
flict developed, however, and the Pennsylvania and Princeton groups split. The
concept of a stored program computer thrived, however, and a working model of
the stored program computer, the

EDSAC

, was constructed by Maurice Wilkes,
of Cambridge University, in 1947.

1.3 The Von Neumann Model

Conventional digital computers have a common form that is attributed to von
Neumann, although historians agree that the entire team was responsible for the
design. The

von Neumann model

 consists of five major components as illus-
trated in Figure 1-2. The

Input Unit

 provides instructions and data to the sys-

Input Unit
Arithmetic
and Logic

Unit (ALU)
Output Unit

Memory
Unit

Control Unit

Figure 1-2 The von Neumann model of a digital computer. Thick arrows represent data paths. Thin

arrows represent control paths.

CHAPTER 1 INTRODUCTION

5

tem, which are subsequently stored in the

Memory Unit

. The instructions and
data are processed by the

Arithmetic and Logic Unit

 (ALU) under the direction
of the

Control Unit

. The results are sent to the

Output Unit

. The ALU and
control unit are frequently referred to collectively as the

central processing unit
(CPU)

. Most commercial computers can be decomposed into these five basic
units.

The

stored program

 is the most important aspect of the von Neumann model.
A program is stored in the computer’s memory along with the data to be pro-
cessed. Although we now take this for granted, prior to the development of the
stored program computer programs were stored on external media, such as plug-
boards (mentioned earlier) or punched cards or tape. In the stored program com-
puter the program can be manipulated as if it is data. This gave rise to compilers
and operating systems, and makes possible the great versatility of the modern
computer.

1.4 The System Bus Model

Although the von Neumann model prevails in modern computers, it has been
streamlined. Figure 1-3 shows the

system bus model

 of a computer system. This

model partitions a computer system into three subunits: CPU, Memory, and
Input/Output (I/O). This refinement of the von Neumann model combines the
ALU and the control unit into one functional unit, the CPU. The input and out-
put units are also combined into a single I/O unit.

Most important to the system bus model, the communications among the com-

Sy
st

em
 B

us

Data Bus

Address Bus

Control Bus

(ALU,
Registers,

and Control)

Memory Input and
Output (I/O)

CPU

Figure 1-3 The system bus model of a computer system. [Contributed by Donald Chiarulli, Univ. Pitts-

burgh.]

6

CHAPTER 1 INTRODUCTION

ponents are by means of a shared pathway called the

system bus

, which is made
up of the

data bus

 (which carries the information being transmitted), the

address bus

 (which identifies where the information is being sent), and the

con-
trol bus

 (which describes aspects of how the information is being sent, and in
what manner). There is also a

power bus

 for electrical power to the components,
which is not shown, but its presence is understood. Some architectures may also
have a separate I/O bus.

Physically, busses are made up of collections of wires that are grouped by func-
tion. A 32-bit data bus has 32 individual wires, each of which carries one bit of
data (as opposed to address or control information). In this sense, the system bus
is actually a group of individual busses classified by their function.

The data bus moves data among the system components. Some systems have sep-
arate data buses for moving information to and from the CPU, in which case
there is a

data-in

 bus and a

data-out

 bus. More often a single data bus moves
data in either direction, although never both directions at the same time.

If the bus is to be shared among communicating entities, then the entities must
have distinguished identities: addresses. In some computers all addresses are
assumed to be memory addresses whether they are in fact part of the computer’s
memory, or are actually I/O devices, while in others I/O devices have separate
I/O addresses. (This topic of I/O addresses is covered in more detail in Chapter
8, Input, Output, and Communication.)

A

memory address,

 or location, identifies a memory location where data is
stored, similar to the way a postal address identifies the location where a recipient
receives and sends mail. During a memory read or write operation the address
bus contains the address of the memory location where the data is to be read
from or written to. Note that the terms “read” and “write” are with respect to the
CPU: the CPU

reads

 data from memory and

writes

 data into memory. If data is
to be read from memory then the data bus contains the value read from that
address in memory. If the data is to be written into memory then the data bus
contains the data value to be written into memory.

The control bus is somewhat more complex, and we defer discussion of this bus
to later chapters. For now the control bus can be thought of as coordinating
access to the data bus and to the address bus, and directing data to specific com-
ponents.

CHAPTER 1 INTRODUCTION

7

1.5 Levels of Machines

As with any complex system, the computer can be viewed from a number of per-
spectives, or levels, from the highest “user” level to the lowest, transistor level.
Each of these levels represents an abstraction of the computer. Perhaps one of the
reasons for the enormous success of the digital computer is the extent to which
these levels of abstraction are separate, or independent from one another. This is
readily seen: a user who runs a word processing program on a computer needs to
know nothing about its programming. Likewise a programmer need not be con-
cerned with the logic gate structure inside the computer. One interesting way
that the separation of levels has been exploited is in the development of
upwardly-compatible machines.

1.5.1

UPWARD COMPATIBILITY

The invention of the transistor led to a rapid development of computer hard-
ware, and with this development came a problem of compatibility. Computer
users wanted to take advantage of the newest and fastest machines, but each new
computer model had a new architecture, and the old software would not run on
the new hardware. The hardware / software compatibility problem became so
serious that users often delayed purchasing a new machine because of the cost of
rewriting the software to run on the new hardware. When a new computer was
purchased, it would often sit unavailable to the target users for months while the
old software and data sets were converted to the new systems.

In a successful gamble that pitted compatibility against performance, IBM pio-
neered the concept of a “family of machines” with its 360 series. More capable
machines in the same family could run programs written for less capable
machines without modifications to those programs—upward compatibility.
Upward compatibility allows a user to upgrade to a faster, more capable machine
without rewriting the software that runs on the less capable model.

1.5.2

THE LEVELS

Figure 1-4 shows seven levels in the computer, from the user level down to the
transistor level. As we progress from the top level downward, the levels become
less “abstract” and more of the internal structure of the computer shows through.
We discuss these levels below.

8

CHAPTER 1 INTRODUCTION

User or Application-Program Level

We are most familiar with the user, or application program level of the computer.
At this level, the user interacts with the computer by running programs such as
word processors, spreadsheet programs, or games. Here the user sees the com-
puter through the programs that run on it, and little (if any) of its internal or
lower-level structure is visible.

High Level Language Level

Anyone who has programmed a computer in a high level language such as C,
Pascal, Fortran, or Java, has interacted with the computer at this level. Here, a
programmer sees only the language, and none of the low-level details of the
machine. At this level the programmer sees the data types and instructions of the
high-level language, but needs no knowledge of how those data types are actually
implemented in the machine. It is the role of the

compiler

 to map data types and
instructions from the high-level language to the actual computer hardware. Pro-
grams written in a high-level language can be re-compiled for various machines
that will (hopefully) run the same and provide the same results regardless of
which machine on which they are compiled and run. We can say that programs
are compatible across machine types if written in a high-level language, and this
kind of compatibility is referred to as

source code compatibility

.

High Level

High Level Languages

User Level: Application Programs

Low Level

Functional Units (Memory, ALU, etc.)

Logic Gates

Transistors and Wires

Assembly Language / Machine Code

Microprogrammed / Hardwired Control

Figure 1-4 Levels of machines in the computer hierarchy.

CHAPTER 1 INTRODUCTION

9

Assembly Language/Machine Code Level

As pointed out above, the high-level language level really has little to do with the
machine on which the high-level language is translated. The compiler translates
the source code to the actual machine instructions, sometimes referred to as

machine language

 or

machine code

. High-level languages “cater” to the pro-
grammer by providing a certain set of presumably well-thought-out language
constructs and data types. Machine languages look “downward” in the hierarchy,
and thus cater to the needs of the lower level aspects of the machine design. As a
result, machine languages deal with hardware issues such as registers and the
transfer of data between them. In fact, many machine instructions can be
described in terms of the register transfers that they effect. The collection of
machine instructions for a given machine is referred to as the

instruction set

 of
that machine.

Of course, the actual machine code is just a collection of 1’s and 0’s, sometimes
referred to as

machine binary code

, or just binary code. As we might imagine,
programming with 1’s and 0’s is tedious and error prone. As a result, one of the
first computer programs written was the

assembler

, which translates ordinary
language

mnemonics

 such as

MOVE Data

,

Acc

, into their corresponding
machine language 1’s and 0’s. This language, whose constructs bear a one-to-one
relationship to machine language, is known as

assembly language

.

As a result of the separation of levels, it is possible to have many different
machines that differ in the lower-level implementation but which have the same
instruction set, or sub- or supersets of that instruction set. This allowed IBM to
design a product line such as the

IBM 360

 series with guaranteed upward com-
patibility of machine code. Machine code running on the 360 Model 35 would
run unchanged on the 360 Model 50, should the customer wish to upgrade to
the more powerful machine. This kind of compatibility is known as “binary
compatibility,” because the binary code will run unchanged on the various family
members. This feature was responsible in large part for the great success of the
IBM 360 series of computers.

Intel Corporation

 has stressed binary compatibility in its family members. In
this case, binaries written for the original member of a family, such as the 8086,
will run unchanged on all subsequent family members, such as the 80186,
80286, 80386, 80486, and the most current family member, the Pentium pro-
cessor. Of course this does not address the fact that there are other computers
that present different instruction sets to the users, which makes it difficult to port
an installed base of software from one family of computers to another.

10

CHAPTER 1 INTRODUCTION

The Control Level

It is the

control unit

 that effects the register transfers described above. It does so
by means of

control signals

 that transfer the data from register to register, possi-
bly through a logic circuit that transforms it in some way. The control unit inter-
prets the machine instructions one by one, causing the specified register transfer
or other action to occur.

How it does this is of no need of concern to the assembly language programmer.
The Intel 80x86 family of processors presents the same behavioral view to an
assembly language programmer regardless of which processor in the family is
considered. This is because each future member of the family is designed to exe-
cute the original 8086 instructions in addition to any new instructions imple-
mented for that particular family member.

As Figure 1-4 indicates, there are several ways of implementing the control unit.
Probably the most popular way at the present time is by “hardwiring” the control
unit. This means that the control signals that effect the register transfers are gen-
erated from a block of digital logic components. Hardwired control units have
the advantages of speed and component count, but until recently were exceed-
ingly difficult to design and modify. (We will study this technique more fully in
Chapter 9.)

A somewhat slower but simpler approach is to implement the instructions as a

microprogram

. A microprogram is actually a small program written in an even
lower-level language, and implemented in the hardware, whose job is to interpret
the machine-language instructions. This microprogram is referred to as

firmware

because it spans both hardware and software. Firmware is executed by a

micro-
controller

, which executes the actual microinstructions. (We will also explore
microprogramming in Chapter 9.)

Functional Unit Level

The register transfers and other operations implemented by the control unit
move data in and out of “functional units,” so-called because they perform some
function that is important to the operation of the computer. Functional units
include internal CPU registers, the ALU, and the computer’s main memory.

CHAPTER 1 INTRODUCTION

11

Logic Gates, Transistors, and Wires

The lowest levels at which any semblance of the computer’s higher-level func-
tioning is visible is at the

logic gate

 and

transistor

 levels. It is from logic gates
that the functional units are built, and from transistors that logic gates are built.
The logic gates implement the lowest-level logical operations upon which the
computer’s functioning depends. At the very lowest level, a computer consists of
electrical components such as transistors and wires, which make up the logic
gates, but at this level the functioning of the computer is lost in details of voltage,
current, signal propagation delays, quantum effects, and other low-level matters.

Interactions Between Levels

The distinctions within levels and between levels are frequently blurred. For
instance, a new computer architecture may contain floating point instructions in
a full-blown implementation, but a minimal implementation may have only
enough hardware for integer instructions. The floating point instructions are

trapped

†

 prior to execution and replaced with a sequence of machine language
instructions that imitate, or

emulate

 the floating point instructions using the
existing integer instructions. This is the case for

microprocessors

 that use
optional floating point coprocessors. Those without floating point coprocessors
emulate the floating point instructions by a series of floating point routines that
are implemented in the machine language of the microprocessor, and frequently
stored in a

ROM

, which is a read-only memory chip. The assembly language and
high level language view for both implementations is the same except for execu-
tion speed.

It is possible to take this emulation to the extreme of emulating the entire
instruction set of one computer on another computer. The software that does
this is known as an

emulator

, and was used by

Apple Computer

 to maintain
binary code compatibility when they began employing Motorola PowerPC chips
in place of Motorola 68000 chips, which had an entirely different instruction set.

The high level language level and the firmware and functional unit levels can be
so intermixed that it is hard to identify what operation is happening at which
level. The value in stratifying a computer architecture into a hierarchy of levels is
not so much for the purpose of classification, which we just saw can be difficult
at times, but rather to simply give us some focus when we study these levels in

†. Traps are covered in Chapter 9.

12

CHAPTER 1 INTRODUCTION

the chapters that follow.

The Programmer’s View—The Instruction Set Architecture

As described in the discussion of levels above, the assembly language programmer
is concerned with the assembly language and functional units of the machine.
This collection of instruction set and functional units is known as the

instruc-
tion set architecture

 (ISA) of the machine.

The Computer Architect’s View

On the other hand, the computer architect views the system at all levels. The
architect that focuses on the design of a computer is invariably driven by perfor-
mance requirements and cost constraints. Performance may be specified by the
speed of program execution, the storage capacity of the machine, or a number of
other parameters. Cost may be reflected in monetary terms, or in size or weight,
or power consumption. The design proposed by a computer architect must
attempt to meet the performance goals while staying within the cost constraints.
This usually requires trade-offs between and among the levels of the machine.

1.6 A Typical Computer System

Modern computers have evolved from the great behemoths of the 1950’s and
1960’s to the much smaller and more powerful computers that surround us
today. Even with all of the great advances in computer technology that have been
made in the past few decades, the five basic units of the von Neumann model are
still distinguishable in modern computers.

Figure 1-5 shows a typical configuration for a desktop computer. The input unit
is composed of the

keyboard

, through which a user enters data and commands.
A

video monitor comprises the output unit, which displays the output in a
visual form. The ALU and the control unit are bundled into a single micropro-
cessor that serves as the CPU. The memory unit consists of individual memory
circuits, and also a hard disk unit, a diskette unit, and a CD-ROM (compact
disk - read only memory) device.

As we look deeper inside of the machine, we can see that the heart of the
machine is contained on a single motherboard, similar to the one shown in Fig-
ure 1-6. The motherboard contains integrated circuits (ICs), plug-in expansion
card slots, and the wires that interconnect the ICs and expansion card slots. The

CHAPTER 1 INTRODUCTION 13

input, output, memory, and ALU/control sections are highlighted as shown. (We
will cover motherboard internals in later chapters.)

1.7 Organization of the Book
We explore the inner workings of computers in the chapters that follow. Chapter
2 covers the representation of data, which provides background for all of the
chapters that follow. Chapter 3 covers methods for implementing computer
arithmetic. Chapters 4-6 cover the instruction set architecture, which serves as a
vehicle for understanding how the components of a computer interact.

Figure 1-5 A desktop computer system.

14 CHAPTER 1 INTRODUCTION

Chapter 7 covers the organization of memory units, and memory management
techniques. Chapter 8 covers input, output, and communication. Chapter 9 ties
the earlier chapters together in the design and analysis of a control unit for the
instruction set architecture. Chapter 10 covers advanced topics such as parallel
and distributed architecture. Finally, in Appendices A and B, we look into the
design of digital logic circuits, which are the building blocks for the basic compo-
nents of a computer.

1.8 Case Study: What Happened to Supercomputers?
[Note from the authors: The following contribution comes from Web page
http://www.paralogos.com/DeadSuper created by Kevin D. Kissell at
kevink@acm.org. Kissell’s Web site lists dozens of supercomputing projects that
have gone by the wayside. One of the primary reasons for the near-extinction of
supercomputers is that ordinary, everyday computers achieve a significant frac-

Memory

Input / output

Battery

Plug-in expansion card slots

Power supply
connector

Pentium II processor slot
(ALU/control)

Figure 1-6 A Pentium II based motherboard. [Source: TYAN Computer,

http://www.tyan.com.]

CHAPTER 1 INTRODUCTION 15

tion of supercomputing power at a price that the common person can afford.
The price-to-performance ratio for desktop computers is very favorable due to
low costs achieved through mass market sales. Supercomputers enjoy no such
mass markets, and continue to suffer very high price-to-performance ratios.

Following Kissell’s contribution is an excerpt from an Electrical Engineering
Times article that highlights the enormous investment in everyday microproces-
sor development, which helps maintain the favorable price-to-performance ratio
for low-cost desktop computers.]

The Passing of a Golden Age?

From the construction of the first programmed computers until the mid 1990s,
there was always room in the computer industry for someone with a clever, if
sometimes challenging, idea on how to make a more powerful machine. Com-
puting became strategic during the Second World War, and remained so during
the Cold War that followed. High-performance computing is essential to any
modern nuclear weapons program, and a computer technology “race” was a logi-
cal corollary to the arms race. While powerful computers are of great value to a
number of other industrial sectors, such as petroleum, chemistry, medicine, aero-
nautical, automotive, and civil engineering, the role of governments, and partic-
ularly the national laboratories of the US government, as catalysts and incubators
for innovative computing technologies can hardly be overstated. Private industry
may buy more machines, but rarely do they risk buying those with single-digit
serial numbers. The passing of Soviet communism and the end of the Cold War
brought us a generally safer and more prosperous world, but it removed the rai-

Figure 1-7 The Manchester University Mark I, made operational on 21 June 1948. (Not to be con-

fused with the Harvard Mark I, donated to Harvard University by International Business Machines

in August, 1944.)

16 CHAPTER 1 INTRODUCTION

son d'etre for many merchants of performance-at-any-price.

Accompanying these geopolitical changes were some technological and economic
trends that spelled trouble for specialized producers of high-end computers.
Microprocessors began in the 1970s as devices whose main claim to fame was
that it was possible to put a stored-program computer on a single piece of silicon.
Competitive pressures, and the desire to generate sales by obsoleting last year’s
product, made for the doubling of microprocessor computing power every 18
months, Moore's celebrated “law.” Along the way, microprocessor designers bor-
rowed almost all the tricks that designers of mainframe and numerical supercom-
puters had used in the past: storage hierarchies, pipelining, multiple functional
units, multiprocessing, out-of-order execution, branch prediction, SIMD pro-
cessing, speculative and predicated execution. By the mid 1990s, research ideas
were going directly from simulation to implementation in microprocessors des-
tined for the desktops of the masses. Nevertheless, it must be noted that most of
the gains in raw performance achieved by microprocessors in the preceding
decade came, not from these advanced techniques of computer architecture, but
from the simple speedup of processor clocks and quantitative increase in proces-
sor resources made possible by advances in semiconductor technology. By 1998,
the CPU of a high-end Windows-based personal computer was running at a
higher clock rate than the top-of-the-line Cray Research supercomputer of 1994.

It is thus hardly surprising that the policy of the US national laboratories has
shifted from the acquisition of systems architected from the ground up to be
supercomputers to the deployment of large ensembles of mass-produced micro-
processor-based systems, with the ASCI project as the flagship of this activity. As
of this writing, it remains to be seen if these agglomerations will prove to be suf-
ficiently stable and usable for production work, but the preliminary results have
been at least satisfactory. The halcyon days of supercomputers based on exotic
technology and innovative architecture may well be over.

[...]

Kevin D. Kissell
kevink@acm.org
February, 1998

[Note from the authors: The following excerpt is taken from the Electronic Engi-
neering Times, source:

CHAPTER 1 INTRODUCTION 17

http://techweb.cmp.com/eet/news/98/994news/invest.html.]

Invest or die: Intel’s life on the edge

 By Ron Wilson and Brian Fuller

SANTA CLARA, Calif. -- With about $600 million to pump
into venture companies this year, Intel Corp. has
joined the major leagues of venture-capital firms. But
the unique imperative that drives the microprocessor
giant to invest gives it influence disproportionate to
even this large sum. For Intel, venture investments
are not just a source of income; they are a vital tool
in the fight to survive.

Survival might seem an odd preoccupation for the
world's largest semiconductor company. But Intel, in a
way all its own, lives hanging in the balance. For
every new generation of CPUs, Intel must make huge
investments in process development, in buildings and
in fabs-an investment too huge to lose.

Gordon Moore, Intel chairman emeritus, gave scale to
the wager. "An R&D fab today costs $400 million just
for the building. Then you put about $1 billion of
equipment in it. That gets you a quarter-micron fab
for maybe 5,000 wafers per week, about the smallest
practical fab. For the next generation," Moore said,
"the minimum investment will be $2 billion, with maybe
$3 billion to $4 billion for any sort of volume produc-
tion. No other industry has such a short life on such
huge investments."

Much of this money will be spent before there is a
proven need for the microprocessors the fab will pro-
duce. In essence, the entire $4 billion per fab is bet
on the proposition that the industry will absorb a
huge number of premium-priced CPUs that are only some-
what faster than the currently available parts. If for
just one generation that didn't happen-if everyone
judged, say, that the Pentium II was fast enough,
thank you-the results would be unthinkable.

"My nightmare is to wake up some day and not need any
more computing power," Moore said.

18 CHAPTER 1 INTRODUCTION

■ SUMMARY

Computer architecture deals with those aspects of a computer that are visible to a
programmer, while computer organization deals with those aspects that are at a
more physical level and are not made visible to a programmer. Historically, pro-
grammers had to deal with every aspect of a computer – Babbage with mechanical
gears, and ENIAC programmers with plugboard cables. As computers grew in
sophistication, the concept of levels of machines became more pronounced, allow-
ing computers to have very different internal and external behaviors while man-
aging complexity in stratified levels. The single most significant development that
makes this possible is the stored program computer, which is embodied in the von
Neumann model. It is the von Neumann model that we see in most conventional
computers today.

■ Further Reading
The history of computing is riddled with interesting personalities and mile-
stones. (Anderson, 1991) gives a short, readable account of both during the last
century. (Bashe et. al., 1986) give an interesting account of the IBM machines.
(Bromley, 1987) chronicles Babbage’s machines. (Ralston and Reilly, 1993) give
short biographies of the more celebrated personalities. (Randell, 1982) covers the
history of digital computers. A very readable Web based history of computers by
Michelle A. Hoyle can be found at http://www.interpac.net/~eingang/Lec-
ture/toc.html. (SciAm, 1993) covers a readable version of the method of finite
differences as it appears in Babbage’s machines, and the version of the analytical
difference engine created by the Science Museum in London.

(Tanenbaum, 1999) is one of a number of texts that popularizes the notion of
levels of machines.

Anderson, Harlan, Dedication address for the Digital Computer Laboratory at
the University of Illinois, April 17, 1991, as reprinted in IEEE Circuits and Sys-
tems: Society Newsletter, vol. 2, no. 1, pp. 3–6, (March 1991).

Bashe, Charles J., Lyle R. Johnson, John H. Palmer, and Emerson W. Pugh,
IBM’s Early Computers, The MIT Press, (1986).

CHAPTER 1 INTRODUCTION 19

Bromley, A. G., “The Evolution of Babbage’s Calculating Engines,” Annals of the
History of Computing, 9, pp. 113-138, (1987).

Randell, B., The Origins of Digital Computers, 3/e, Springer-Verlag, (1982).

Ralston, A. and E. D. Reilly, eds., Encyclopedia of Computer Science, 3/e, van
Nostrand Reinhold, (1993).

Tanenbaum, A., Structured Computer Organization, 4/e, Prentice Hall, Engle-
wood Cliffs, New Jersey, (1999).

■ PROBLEMS
1.1 Moore’s law, which is attributed to Intel founder Gordon Moore, states

that computing power doubles every 18 months for the same price. An unre-
lated observation is that floating point instructions are executed 100 times
faster in hardware than via emulation. Using Moore’s law as a guide, how long
will it take for computing power to improve to the point that floating point
instructions are emulated as quickly as their (earlier) hardware counterparts?

20 CHAPTER 1 INTRODUCTION

