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In the past few decades, CPU processing speed as measured by the number of
instructions executed per second has doubled every 18 months, for the same
price. Computer memory has experienced a similar increase along a different
dimension, quadrupling in size every 36 months, for the same price. Memory
speed, however, has only increased at a rate of less than 10% per year. Thus,
while processing speed increases at the same rate that memory size increases, the
gap between the speed of the processor and the speed of memory also increases.

As the gap between processor and memory speeds grows, architectural solutions
help bridge the gap. A typical computer contains several types of memory, rang-
ing from fast, expensive internal registers (see Appendix A), to slow, inexpensive
removable disks. The interplay between these different types of memory is
exploited so that a computer behaves as if it has a single, large, fast memory,
when in fact it contains a range of memory types that operate in a highly coordi-
nated fashion. We begin the chapter with a high-level discussion of how these
different memories are organized, in what is referred to as the memory hierarchy.

Memory in a conventional digital computer is organized in a hierarchy as illus-
trated in Figure 7-1. At the top of the hierarchy are registers that are matched in
speed to the CPU, but tend to be large and consume a significant amount of
power. There are normally only a small number of registers in a processor, on the
order of a few hundred or less. At the bottom of the hierarchy are secondary and
off-line storage memories such as hard magnetic disks and magnetic tapes, in
which the cost per stored bit is small in terms of money and electrical power, but
the access time is very long when compared with registers. Between the registers
and secondary storage are a number of other forms of memory that bridge the
gap between the two.
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Figure 7-1  The memory hierarchy.

As we move up through the hierarchy, greater performance is realized, at a greater
cost. Table 7- 1shows some of the properties of the components of the memory

Memory Type | Access Time | Cost/MB | Typical | Typical Cost
Amount
Used

Registers 1ns High 1KB -

Cache 5-20 ns $100 1MB $100

Main memory | 60-80ns $1.10 64 MB | $70

Disk memory | 10 ms $0.05 4GB $200

Table 7- 1 Properties of the memory hierarchy

hierarchy in the late 1990’. Notice that Typical Cost, arrived at by multiplying
Cost/MB x Typical Amount Used (in which “MB” is a unit of megabytes), is
approximately the same for each member of the hierarchy. Notice also that access
times vary by approximately factors of 10 except for disks, which have access
times 100,000 times slower than main memory. This large mismatch has an
important influence on how the operating system handles the movement of
blocks of data between disks and main memory, as we will see later in the chap-
ter.
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In this section, we look at the structure and function of random access memory
(RAM). In this context the term “random” means that any memory location can
be accessed in the same amount of time, regardless of its position in the memory.

Figure 7-2 shows the functional behavior of a RAM cell used in a typical com-

Read

Select

Figure 7-2  Functional behavior of a RAM cell.

puter. The figure represents the memory element as a D flip-flop, with additional
controls to allow the cell to be selected, read, and written. There is a (bidirec-
tional) data line for data input and output. We will use cells similar to the one
shown in the figure when we discuss RAM chips. Note that this illustration does
not necessarily represent the actual physical implementation, but only its func-
tional behavior. There are many ways to implement a memory cell.

RAM chips that are based upon flip-flops, as in Figure 7-2, are referred to as
static RAM (SRAM), chips, because the contents of each location persist as long
as power is applied to the chips. Dynamic RAM chips, referred to as DRAMS,
employ a capacitor, which stores a minute amount of electric charge, in which
the charge level represents a 1 or a 0. Capacitors are much smaller than flip-flops,
and so a capacitor based DRAM can hold much more information in the same
area than an SRAM. Since the charges on the capacitors dissipate with time, the
charge in the capacitor storage cells in DRAMSs must be restored, or refreshed
frequently.

DRAM:s are susceptible to premature discharging as a result of interactions with
naturally occurring gamma rays. This is a statistically rare event, and a system
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may run for days before an error occurs. For this reason, early personal comput-
ers (PCs) did not use error detection circuitry, since PCs would be turned off at
the end of the day, and so undetected errors would not accumulate. This helped
to keep the prices of PCs competitive. With the drastic reduction in DRAM
prices and the increased uptimes of PCs operating as automated teller machines
(ATMs) and network file servers (NFSs), error detection circuitry is now com-
monplace in PCs.

In the next section we explore how RAM cells are organized into chips.

A simplified pinout of a RAM chip is shown in Figure 7-3. An m-bit address,

WR

Ao-Am-1 —> Mgrl‘?igry «—> Dp-Dy.1

CS

Figure 7-3  Simplified RAM chip pinout

having lines numbered from 0 to m-1 is applied to pins Ag-Ap,_1, While asserting
CS (Chip Select), and either WR (for writing data to the chip) or WR (for read-
ing data from the chip). The overbars on CS and WR indicate that the chip is
selected when CS=0 and that a write operation will occur when WR=0. When
reading data from the chip, after a time period ty, (the time delay from when the
address lines are made valid to the time the data is available at the output), the
w-bit data word appears on the data lines Dgy- D,.1. When writing data to a chip,
the data lines must also be held valid for a time period tys. Notice that the data
lines are bidirectional in Figure 7-3, which is normally the case.

The address lines Ap- A1 in the RAM chip shown in Figure 7-3 contain an
address, which is decoded from an m-bit address into one of 2™ locations within
the chip, each of which has a w-bit word associated with it. The chip thus con-
tains 2Mxw bits.
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Now consider the problem of creating a RAM that stores four four-bit words. A
RAM can be thought of as a collection of registers. We can use four-bit registers
to store the words, and then introduce an addressing mechanism that allows one
of the words to be selected for reading or for writing. Figure 7-4 shows a design
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Figure 7-4 A four-word memory with four bits per word in a 2D organization.

for the memory. Two address lines Ag and A4 select a word for reading or writing
via the 2-to-4 decoder. The outputs of the registers can be safely tied together
without risking an electrical short because the 2-to-4 decoder ensures that at
most one register is enabled at a time, and the disabled registers are electrically
disconnected through the use of tri-state buffers. The Chip Select line in the
decoder is not necessary, but will be used later in constructing larger RAMs. A
simplified drawing of the RAM is shown in Figure 7-5 .

There are two common ways to organize the generalized RAM shown in Figure
7-3. In the smallest RAM chips it is practical to use a single decoder to select one

MEMORY 241
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Figure 7-5 A simplified version of the four-word by four-bit RAM.

out of 2™ words, each of which is w bits wide. However, this organization is not
economical in ordinary RAM chips. Consider that a 64Mx1 chip has 26 address
lines (64M = 22). This means that a conventional decoder would need 228
26-input AND gates, which manifests itself as a large cost in terms of chip area —
and this is just for the decode.

Since most 1Cs are roughly square, an alternate decoding structure that signifi-
cantly reduces the decoder complexity decodes the rows separately from the col-
umns. This is referred to as a 2-1/2D organization. The 2-1/2D organization is
by far the most prevalent organization for RAM ICs. Figure 7-6 shows a 2%-word
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Figure 7-6  2-1/2D organization of a 64-word by one-bit RAM.

x1-bit RAM with a 2 1/2D organization. The six address lines are evenly split
between a row decoder and a column decoder (the column decoder is actually a
MUX/DEMUX combination). A single bidirectional data line is used for input
and output.

During a read operation, an entire row is selected and fed into the column
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MUX, which selects a single bit for output. During a write operation, the single
bit to be written is distributed by the DEMUX to the target column, while the
row decoder selects the proper row to be written.

In practice, to reduce pin count, there are generally only m/2 address pins on the
chip, and the row and column addresses are time-multiplexed on these m/2
address lines. First, the m/2-bit row address is applied along with a row address
strobe, RAS, signal. The row address is latched and decoded by the chip. Then
the m/2-bit column address is applied, along with a column address strobe, CAS.
There may be additional pins to control the chip refresh and other memory func-
tions.

Even with this 2-1/2D organization and splitting the address into row and col-
umn components, there is still a great fanin/fanout demand on the decoder logic
gates, and the (still) large number of address pins forces memory chips into large
footprints on printed circuit boards (PCBs). In order to reduce the fanin/fanout
constraints, tree decoders may be used, which are discussed in Section 7.8.1. A
newer memory architecture that serializes the address lines onto a single input
pin is discussed in Section 7.9.

Although DRAMs are very economical, SRAMs offer greater speed. The refresh
cycles, error detection circuitry, and the low operating powers of DRAMS create
a speed difference that is roughly 1/4 of SRAM speed, but SRAMs also incur a
significant cost.

The performance of both types of memory (SRAM and DRAM) can be
improved. Normally a number of words constituting a block will be accessed in
succession. In this situation, memory accesses can be interleaved so that while
one memory is accessing address A,, other memories are accessing An+1, Am+2:
Ann+3 etc. In this way the access time for each word can appear to be many times
faster.

CONSTRUCTING LARGE RAMS FROM SMALL RAMS

We can construct larger RAM modules from smaller RAM modules. Both the
word size and the number of words per module can be increased. For example,
eight 16M x 1-bit RAM modules can be combined to make a 16M x 8-bit RAM
module, and 32 16M x 1-bit RAM modules can be combined to make a 64M x
8-bit RAM module.

MEMORY 243
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As a simple example, consider using the 4 word x 4-bit RAM chip shown in Fig-
ure 7-5, as a building block to first make a 4-word x 8-bit module, and then an
8-word x 4-bit module. We would like to increase the width of the four-bit
words and also increase the number of words. Consider first the problem of
increasing the word width from four bits to eight. We can accomplish this by
simply using two chips, tying their CS (chip select) lines together so they are
both selected together, and juxtaposing their data lines, as shown in Figure 7-7.

cs
Ao 4x4 RAM 4x4 RAM
Al |7

Q7 Q6 Qs Q4 Q3 Q; Q1 Qo

Figure 7-7  Two four-word by four-bit RAMs are used in creating a four-word by eight-bit RAM.

Consider now the problem of increasing the number of words from four to eight.
Figure 7-8 shows a configuration that accomplishes this. The eight words are dis-
tributed over the two four-word RAMs. Address line A, is needed because there
are now eight words to be addressed. A decoder for A, enables either the upper or
lower memory module by using the CS lines, and then the remaining address
lines (Ag and A;) are decoded within the enabled module. A combination of
these two approaches can be used to scale both the word size and number of
words to arbitrary sizes.

Commercially available memory chips are commonly organized into standard
configurations. Figure 7-9 (Texas Instruments, 1991) shows an organization of
eight 229-bit chips on a single-in-line memory module (SIMM) that form a 220
x 8 (LMB) module. The electrical contacts (numbered 1 — 30) all lie in a single
line. For 220 memory locations we need 20 address lines, but only 10 address
lines (AO — A9) are provided. The 10-bit addresses for the row and column are
loaded separately, and the Column Address Strobe and Row Address Strobe sig-
nals are applied after the corresponding portion of the address is made available.
Although this organization appears to double the time it takes to access any par-
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Figure 7-8 Two four-word by four-bit RAMs are used in creating an eight-word by four-bit RAM.

ticular memory location, on average, the access time is much better since only
the row or column address needs to be updated.

The eight data bits on lines DQ1 — DQ8 form a byte that is read or written in
parallel. In order to form a 32-bit word, four SIMM modules are needed. As
with the other “active low” signals, the Write Enable line has a bar over the corre-
sponding symbol (W) which means that a write takes place when a 0 is placed
on this line. A read takes place otherwise. The RAS line also causes a refresh
operation, which must be performed at least every 8 ms to restore the charges on
the capacitors.

When a computer program is loaded into the memory, it remains in the memory
until it is overwritten or until the power is turned off. For some applications, the
program never changes, and so it is hardwired into a read-only memory
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Figure 7-9  Single-in-line memory module (Texas Instruments, 1991).

(ROM). ROMs are used to store programs in videogames, calculators, micro-
wave ovens, and automobile fuel injection controllers, among many other appli-
cations.

The ROM is a simple device. All that is needed is a decoder, some output lines,
and a few logic gates. There is no need for flip-flops or capacitors. Figure 7-10

2-to-4
decoder
00 !
] Location| Stored
Ao 2(1) word
A —]
! 1l 00 0101
01 1011
| 10 1110
Enable 11 0000

Q3 Q Q Qo
Figure 7-10 A ROM stores four four-bit words.
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shows a four-word ROM that stores four four-bit words (0101, 1011, 1110, and
0000). Each address input (00, 01, 10, or 11) corresponds to a different stored
word.

For high-volume applications, ROMs are factory-programmed. As an alternative,
for low-volume or prototyping applications, programmable ROMs (PROMs) are
often used, which allow their contents to be written by a user with a relatively
inexpensive device called a PROM burner. Unfortunately for the early videog-
ame industry, these PROM burners are also capable of reading the contents of a
PROM, which can then be duplicated onto another PROM, or worse still, the
contents can be deciphered through reverse engineering and then modified and
written to a new, contraband game cartridge.

Although the PROM allows the designer to delay decisions about what informa-
tion is stored, it can only be written once, or can be rewritten only if the existing
pattern is a subset of the new pattern. Erasable PROMs (EPROMS) can be writ-
ten several times, after being erased with ultraviolet light (for UVPROM:s)
through a window that is mounted on the integrated circuit package. Electrically
erasable PROMs (EEPROMs) allow their contents to be rewritten electrically.
Newer flash memories can be electrically rewritten tens of thousands of times,
and are used extensively in digital video cameras, and for control programs in
set-top cable television decoders, and other devices.

PROMs will be used later in the text for control units and for arithmetic logic
units (ALUs). As an example of this type of application, consider creating an
ALU that performs the four functions: Add, Subtract, Multiply, and Divide on
eight-bit operands. We can generate a truth table that enumerates all 28 possible
combinations of operands and all 22 combinations of functions, and send the
truth table to a PROM burner which loads it into the PROM.

This brute force lookup table (LUT) approach is not as impractical as it may
seem, and is actually used in a number of situations. The PROM does not have
to be very big: there are 28 x 28 combinations of the two input operands, and
there are 22 functions, so we need a total of 28 x 28 x 22 = 218 words in the
PROM, which is small by current standards. The configuration for the PROM
ALU is shown in Figure 7-11. The address lines are used for the operands and for
the function select inputs, and the outputs are produced by simply recalling the
precomputed word stored at the addressed location. This approach is typically
faster than using a hardware implementation for the functions, but it is not
extensible to large word widths without applying some form of decomposition.

MEMORY 247
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Figure 7-11 A lookup table (LUT) implements an eight-bit ALU.

32-bit operands are standard on computers today, and a corresponding PROM
ALU would require 232 x 232 x 22 = 256 words which is prohibitively large.

When a program executes on a computer, most of the memory references are
made to a small number of locations. Typically, 90% of the execution time of a
program is spent in just 10% of the code. This property is known as the locality
principle. When a program references a memory location, it is likely to reference
that same memory location again soon, which is known as temporal locality.
Similarly, there is spatial locality, in which a memory location that is near a
recently referenced location is more likely to be referenced than a memory loca-
tion that is farther away. Temporal locality arises because programs spend much
of their time in iteration or in recursion, and thus the same section of code is vis-
ited a disproportionately large number of times. Spatial locality arises because
data tends to be stored in contiguous locations. Although 10% of the code
accounts for the bulk of memory references, accesses within the 10% tend to be
clustered. Thus, for a given interval of time, most of memory accesses come from
an even smaller set of locations than 10% of a program?’s size.

Memory access is generally slow when compared with the speed of the central
processing unit (CPU), and so the memory poses a significant bottleneck in
computer performance. Since most memory references come from a small set of
locations, the locality principle can be exploited in order to improve perfor-
mance. A small but fast cache memory, in which the contents of the most com-
monly accessed locations are maintained, can be placed between the main
memory and the CPU. When a program executes, the cache memory is searched
first, and the referenced word is accessed in the cache if the word is present. If the
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referenced word is not in the cache, then a free location is created in the cache
and the referenced word is brought into the cache from the main memory. The
word is then accessed in the cache. Although this process takes longer than
accessing main memory directly, the overall performance can be improved if a
high proportion of memory accesses are satisfied by the cache.

Modern memory systems may have several levels of cache, referred to as Level 1
(L1), Level 2 (L2), and even, in some cases, Level 3 (L3). In most instances the
L1 cache is implemented right on the CPU chip. Both the Intel Pentium and the
IBM-Motorola PowerPC G3 processors have 32 Kbytes of L1 cache on the CPU
chip.

A cache memory is faster than main memory for a number of reasons. Faster
electronics can be used, which also results in a greater expense in terms of money,
size, and power requirements. Since the cache is small, this increase in cost is rel-
atively small. A cache memory has fewer locations than a main memory, and as a
result it has a shallow decoding tree, which reduces the access time. The cache is
placed both physically closer and logically closer to the CPU than the main
memory, and this placement avoids communication delays over a shared bus.

A typical situation is shown in Figure 7-12. A simple computer without a cache

_ CPU ]
CPU Main 200MHz |  Man
200 MHz Memory Memory
10 MHz 10 MHz
Bus 33 MHz Bus 33 MHz
Without cache With cache

Figure 7-12  Placement of cache in a computer system.

memory is shown in the left side of the figure. This cache-less computer contains
a CPU that has a clock speed of 200 MHz, but communicates over a 33 MHz
bus to a main memory that supports a lower clock speed of 10 MHz. A few bus
cycles are normally needed to synchronize the CPU with the bus, and thus the
difference in speed between main memory and the CPU can be as large as a fac-
tor of ten or more. A cache memory can be positioned closer to the CPU as
shown in the right side of Figure 7-12, so that the CPU sees fast accesses over a
200 MHz direct path to the cache.

MEMORY 249
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ASSOCIATIVE MAPPED CACHE

A number of hardware schemes have been developed for translating main mem-
ory addresses to cache memory addresses. The user does not need to know about
the address translation, which has the advantage that cache memory enhance-
ments can be introduced into a computer without a corresponding need for
modifying application software.

The choice of cache mapping scheme affects cost and performance, and there is
no single best method that is appropriate for all situations. In this section, an
associative mapping scheme is studied. Figure 7-13 shows an associative map-
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Cache
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Main Memory

Figure 7-13  An associative mapping scheme for a cache memory.

ping scheme for a 232 word memory space that is divided into 227 blocks of 2° =
32 words per block. The main memory is not physically partitioned in this way,
but this is the view of main memory that the cache sees. Cache blocks, or cache
lines, as they are also known, typically range in size from 8 to 64 bytes. Data is
moved in and out of the cache a line at a time using memory interleaving (dis-
cussed earlier).

The cache for this example consists of 214 slots into which main memory blocks
are placed. There are more main memory blocks than there are cache slots, and
any one of the 227 main memory blocks can be mapped into each cache slot
(with only one block placed in a slot at a time). To keep track of which one of the
227 possible blocks is in each slot, a 27-bit tag field is added to each slot which
holds an identifier in the range from 0 to 227 —1.The tag field is the most signif-
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icant 27 bits of the 32-bit memory address presented to the cache. All the tags
are stored in a special tag memory where they can be searched in parallel. When-
ever a new block is stored in the cache, its tag is stored in the corresponding tag
memory location.

When a program is first loaded into main memory, the cache is cleared, and so
while a program is executing, a valid bit is needed to indicate whether or not the
slot holds a block that belongs to the program being executed. There is also a
dirty bit that keeps track of whether or not a block has been modified while it is
in the cache. A slot that is modified must be written back to the main memory
before the slot is reused for another block.

A referenced location that is found in the cache results in a hit, otherwise, the
result is a miss. When a program is initially loaded into memory, the valid bits
are all set to 0. The first instruction that is executed in the program will therefore
cause a miss, since none of the program is in the cache at this point. The block
that causes the miss is located in the main memory and is loaded into the cache.

In an associative mapped cache, each main memory block can be mapped to any
slot. The mapping from main memory blocks to cache slots is performed by par-
titioning an address into fields for the tag and the word (also known as the “byte”
field) as shown below:

Tag Word

27 bits 5 bits

When a reference is made to a main memory address, the cache hardware inter-
cepts the reference and searches the cache tag memory to see if the requested
block is in the cache. For each slot, if the valid bit is 1, then the tag field of the
referenced address is compared with the tag field of the slot. All of the tags are
searched in parallel, using an associative memory (which is something different
than an associative mapping scheme. See Section 7.8.3 for more on associative
memories.) If any tag in the cache tag memory matches the tag field of the mem-
ory reference, then the word is taken from the position in the slot specified by the
word field. If the referenced word is not found in the cache, then the main mem-
ory block that contains the word is brought into the cache and the referenced
word is then taken from the cache. The tag, valid, and dirty fields are updated,
and the program resumes execution.

Consider how an access to memory location (A035F014)¢ is mapped to the
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cache. The leftmost 27 bits of the address form the tag field, and the remaining
five bits form the word field as shown below:

Tag Word

101000000011010111110000000{10100

If the addressed word is in the cache, it will be found in word (14)4¢ of a slot that
has a tag of (501AF80)4¢, which is made up of the 27 most significant bits of the
address. If the addressed word is not in the cache, then the block corresponding
to the tag field (501AF80),¢ will be brought into an available slot in the cache
from the main memory, and the memory reference that caused the “cache miss”
will then be satisfied from the cache.

Although this mapping scheme is powerful enough to satisfy a wide range of
memory access situations, there are two implementation problems that limit per-
formance. First, the process of deciding which slot should be freed when a new
block is brought into the cache can be complex. This process requires a signifi-
cant amount of hardware and introduces delays in memory accesses. A second
problem is that when the cache is searched, the tag field of the referenced address
must be compared with all 21 tag fields in the cache. (Alternative methods that
limit the number of comparisons are described in Sections 7.6.2 and 7.6.3.)

Replacement Policies in Associative Mapped Caches

When a new block needs to be placed in an associative mapped cache, an avail-
able slot must be identified. If there are unused slots, such as when a program
begins execution, then the first slot with a valid bit of O can simply be used.
When all of the valid bits for all cache slots are 1, however, then one of the active
slots must be freed for the new block. Four replacement policies that are com-
monly used are: least recently used (LRU), first-in first-out (FIFO), least fre-
quently used (LFU),and random. A fifth policy that is used for analysis
purposes only, is optimal.

For the LRU policy, a time stamp is added to each slot, which is updated when
any slot is accessed. When a slot must be freed for a new block, the contents of
the least recently used slot, as identified by the age of the corresponding time
stamp, are discarded and the new block is written to that slot. The LFU policy
works similarly, except that only one slot is updated at a time by incrementing a
frequency counter that is attached to each slot. When a slot is needed for a new
block, the least frequently used slot is freed. The FIFO policy replaces slots in
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round-robin fashion, one after the next in the order of their physical locations in
the cache. The random replacement policy simply chooses a slot at random.

The optimal replacement policy is not practical, but is used for comparison pur-
poses to determine how effective other replacement policies are to the best possi-
ble. That is, the optimal replacement policy is determined only after a program
has already executed, and so it is of little help to a running program.

Studies have shown that the LFU policy is only slightly better than the random
policy. The LRU policy can be implemented efficiently, and is sometimes pre-
ferred over the others for that reason. A simple implementation of the LRU pol-
icy is covered in Section 7.6.7.

Advantages and Disadvantages of the Associative Mapped Cache

The associative mapped cache has the advantage that any main memory block
can be placed into any cache slot. This means that regardless of how irregular the
data and program references are, if a slot is available for the block, it can be
stored in the cache. This results in considerable hardware overhead needed for
cache bookkeeping. Each slot must have a 27-bit tag that identifies its location in
main memory, and each tag must be searched in parallel. This means that in the
example above the tag memory must be 27 x 24 bits in size, and as described
above, there must be a mechanism for searching the tag memory in parallel.
Memories that can be searched for their contents, in parallel, are referred to as
associative, or content-addressable memories. We will discuss this kind of
memory later in the chapter.

By restricting where each main memory block can be placed in the cache, we can
eliminate the need for an associative memory. This kind of cache is referred to as
a direct mapped cache, which is discussed in the next section.

DIRECT MAPPED CACHE

Figure 7-14 shows a direct mapping scheme for a 232 word memory. As before,
the memory is divided into 227 blocks of 2° = 32 words per block, and the cache
consists of 24 slots. There are more main memory blocks than there are cache
slots, and a total of 2277214 = 213 main memory blocks can be mapped onto each
cache slot. In order to keep track of which of the 212 possible blocks is in each
slot, a 13-bit tag field is added to each slot which holds an identifier in the range
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Figure 7-14 A direct mapping scheme for cache memory.

from 0 to 213 — 1.

This scheme is called “direct mapping” because each cache slot corresponds to an
explicit set of main memory blocks. For a direct mapped cache, each main mem-
ory block can be mapped to only one slot, but each slot can receive more than
one block. The mapping from main memory blocks to cache slots is performed
by partitioning an address into fields for the tag, the slot, and the word as shown
below:

Tag Slot Word
13 bits 14 bits 5 hits

The 32-bit main memory address is partitioned into a 13-bit tag field, followed
by a 14-bit slot field, followed by a five-bit word field. When a reference is made
to a main memory address, the slot field identifies in which of the 214 slots the
block will be found if it is in the cache. If the valid bit is 1, then the tag field of
the referenced address is compared with the tag field of the slot. If the tag fields
are the same, then the word is taken from the position in the slot specified by the
word field. If the valid bit is 1 but the tag fields are not the same, then the slot is
written back to main memory if the dirty bit is set, and the corresponding main
memory block is then read into the slot. For a program that has just started exe-
cution, the valid bit will be 0, and so the block is simply written to the slot. The
valid bit for the block is then set to 1, and the program resumes execution.
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Consider how an access to memory location (A035F014)¢ is mapped to the
cache. The bit pattern is partitioned according to the word format shown above.
The leftmost 13 bits form the tag field, the next 14 bits form the slot field, and
the remaining five bits form the word field as shown below:

Tag Slot Word

1010000000110f10111110000000J10100

If the addressed word is in the cache, it will be found in word (14),¢ of slot
(2F80)1¢, which will have a tag of (1406)1.

Advantages and Disadvantages of the Direct Mapped Cache

The direct mapped cache is a relatively simple scheme to implement. The tag
memory in the example above is only 13 x 214 bits in size, less than half of the
associative mapped cache. Furthermore, there is no need for an associative
search, since the slot field of the main memory address from the CPU is used to
“direct” the comparison to the single slot where the block will be if it is indeed in
the cache.

This simplicity comes at a cost. Consider what happens when a program refer-
ences locations that are 21° words apart, which is the size of the cache. This pat-
tern can arise naturally if a matrix is stored in memory by rows and is accessed by
columns. Every memory reference will result in a miss, which will cause an entire
block to be read into the cache even though only a single word is used. Worse
still, only a small fraction of the available cache memory will actually be used.

Now it may seem that any programmer who writes a program this way deserves
the resulting poor performance, but in fact, fast matrix calculations use
power-of-two dimensions (which allows shift operations to replace costly multi-
plications and divisions for array indexing), and so the worst-case scenario of
accessing memory locations that are 219 addresses apart is not all that unlikely.
To avoid this situation without paying the high implementation price of a fully
associative cache memory, the set associative mapping scheme can be used,
which combines aspects of both direct mapping and associative mapping. Set
associative mapping, which is also known as set-direct mapping, is described in
the next section.
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SET ASSOCIATIVE MAPPED CACHE

The set associative mapping scheme combines the simplicity of direct mapping
with the flexibility of associative mapping. Set associative mapping is more prac-
tical than fully associative mapping because the associative portion is limited to
just a few slots that make up a set, as illustrated in Figure 7-15. For this example,

Valid Dirty Tag
N/ / _
[<14>] 32 words
- Slot 0 Block O per block
|—|—|— Slot 1 Block 1
- _
Set1 LLT Slot 2
Block 213
setoag| LLL Slot 214-1 Block 213+1
Cache
Block 227-1
Main Memory

Figure 7-15 A set associative mapping scheme for a cache memory.

two blocks make up a set, and so it is a two-way set associative cache. If there are
four blocks per set, then it is a four-way set associative cache.

Since there are 214 slots in the cache, there are 21472 = 213 sets. When an address
is mapped to a set, the direct mapping scheme is used, and then associative map-
ping is used within a set. The format for an address has 13 bits in the set field,
which identifies the set in which the addressed word will be found if it is in the
cache. There are five bits for the word field as before and there is a 14-bit tag field
that together make up the remaining 32 bits of the address as shown below:

Tag Set Word

14 bits 13 bits 5 bits

As an example of how the set associative cache views a main memory address,
consider again the address (A035F014)q¢. The leftmost 14 bits form the tag
field, followed by 13 bits for the set field, followed by five bits for the word field
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as shown below:
Tag Set Word

10100000001101(0111110000000(10100

As before, the partitioning of the address field is known only to the cache, and
the rest of the computer is oblivious to any address translation.

Advantages and Disadvantages of the Set Associative Mapped Cache

In the example above, the tag memory increases only slightly from the direct
mapping example, to 13 x 21 bits, and only two tags need to be searched for
each memory reference. The set associative cache is almost universally used in
today’s microprocessors.

CACHE PERFORMANCE

Notice that we can readily replace the cache direct mapping hardware with asso-
ciative or set associative mapping hardware, without making any other changes
to the computer or the software. Only the runtime performance will change
between methods.

Runtime performance is the purpose behind using a cache memory, and there are
a number of issues that need to be addressed as to what triggers a word or block
to be moved between the cache and the main memory. Cache read and write pol-
icies are summarized in Figure 7-16. The policies depend upon whether or not
the requested word is in the cache. If a cache read operation is taking place, and
the referenced data is in the cache, then there is a “cache hit” and the referenced
data is immediately forwarded to the CPU. When a cache miss occurs, then the
entire block that contains the referenced word is read into the cache.

In some cache organizations, the word that causes the miss is immediately for-
warded to the CPU as soon as it is read into the cache, rather than waiting for the
remainder of the cache slot to be filled, which is known as a load-through oper-
ation. For a non-interleaved main memory, if the word occurs in the last position
of the block, then no performance gain is realized since the entire slot is brought
in before load-through can take place. For an interleaved main memory, the
order of accesses can be organized so that a load-through operation will always
result in a performance gain.
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Cache Cache
Read Write
A A A A
Datais Datais Datais Datais
inthe not in the inthe not in the
cache cache cache cache
Y Y Y Y
Forward Load Through: Write Through: Write Allocate: Bring
to CPU. Forward the word Write data to both line into cache, then
ascachelineis cache and main update it,
filled, memory, -0or-
-or- -or- Write No-Allocate:
Fill cachelineand Write Back: Write Update main memory
then forward word. only.

datato cache only.
Defer main memory
writeuntil block is
flushed.

Figure 7-16  Cache read and write policies.

For write operations, if the word is in the cache, then there may be two copies of
the word, one in the cache, and one in main memory. If both are updated simul-
taneously, this is referred to as write-through. If the write is deferred until the
cache line is flushed from the cache, this is referred to as write back. Even if the
data item is not in the cache when the write occurs, there is the choice of bring-
ing the block containing the word into the cache and then updating it, known as
write-allocate, or to update it in main memory without involving the cache,
known as write-no-allocate.

Some computers have separate caches for instructions and data, which is a varia-
tion of a configuration known as the Harvard architecture (also known as a
split cache), in which instructions and data are stored in separate sections of
memory. Since instruction slots can never be dirty (unless we write self-modify-
ing code, which is rare these days), an instruction cache is simpler than a data
cache. In support of this configuration, observations have shown that most of the
memory traffic moves away from main memory rather than toward it. Statisti-
cally, there is only one write to memory for every four read operations from
memory. One reason for this is that instructions in an executing program are
only read from the main memory, and are never written to the memory except by
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the system loader. Another reason is that operations on data typically involve
reading two operands and storing a single result, which means there are two read
operations for every write operation. A cache that only handles reads, while send-
ing writes directly to main memory can thus also be effective, although not nec-
essarily as effective as a fully functional cache.

As to which cache read and write policies are best, there is no simple answer. The
organization of a cache is optimized for each computer architecture and the mix
of programs that the computer executes. Cache organization and cache sizes are
normally determined by the results of simulation runs that expose the nature of
memory traffic.

HIT RATIOS AND EFFECTIVE ACCESS TIMES

Two measures that characterize the performance of a cache memory are the hit
ratio and the effective access time. The hit ratio is computed by dividing the
number of times referenced words are found in the cache by the total number of
memory references. The effective access time is computed by dividing the total
time spent accessing memory (summing the main memory and cache access
times) by the total number of memory references. The corresponding equations
are given below:

No. times referenced words are in cache

Hit ratio =
Total number of memory accesses

Eff. access time = (# hits)(Time per hit) + (# misses)(Time per miss)
' Total number of memory access

Consider computing the hit ratio and the effective access time for a program
running on a computer that has a direct mapped cache with four 16-word slots.
The layout of the cache and the main memory are shown in Figure 7-17. The
cache access time is 80 ns, and the time for transferring a main memory block to
the cache is 2500 ns. Assume that load-through is used in this architecture and
that the cache is initially empty. A sample program executes from memory loca-
tions 48 — 95, and then loops 10 times from 15 — 31 before halting.

We record the events as the program executes as shown in Figure 7-18. Since the
memory is initially empty, the first instruction that executes causes a miss. A miss
thus occurs at location 48, which causes main memory block #3 to be read into
cache slot #3. This first memory access takes 2500 ns to complete. Load-through
is used for this example, and so the word that causes the miss at location 48 is
passed directly to the CPU while the rest of the block is loaded into the cache
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Slot 0 BlockO0 [0-15
Slot 1 Block 1 16-31
Slot 2 Block2 |32-47
Slot 3 \\ Block 3 | 48-63
Cache Block 4 64-79
Block 5 80-95

Main Memory

Figure 7-17  An example of a direct mapped cache memory.

Event | Location Time Comment
1miss |48 2500ns Memory block 3 to cacheslot 3
15 hits | 49-63 | 80nsx15=1200ns
1miss |64 2500ns Memory block 4 to cache slot 0
15 hits | 65-79 | 80nsx15=1200ns
1miss |80 2500ns Memory block 5 to cache slot 1
15 hits | 81-95 | 80nsx15=1200ns
1miss |15 2500ns Memory block 0 to cache slot 0
1miss |16 2500ns Memory block 1 to cache slot 1
15hits | 17-31 | 80nsx15=1200ns
9hits |15 80nsx9=720ns Last nine iterations of loop
144 hits| 16-31 | 80nsx144=12,240n9 Last nine iterations of loop
Total hits=213 Tota misses=5

Figure 7-18 A table of events for a program executing on an architecture with a small direct mapped
cache memory.

slot. The next event consists of 15 hits for locations 49 through 63. The events
that follow are recorded in a similar manner, and the result is a total of 213 hits
and five misses. The total number of accesses is 213 + 5 = 218. The hit ratio and
effective access time are computed as shown below:

. . _ 213 _
Hit ratio = 718 = 97.7%

- (213)(80ns) + (5)(2500ns) _ 154,

EffectiveAccessTime 718

Although the hit ratio is 97.6%, the effective access time for this example is
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almost 75% longer than the cache access time. This is due to the large amount of
time spent in accessing a block from main memory.

MULTILEVEL CACHES

As the sizes of silicon ICs have increased, and the packing density of components
on ICs has increased, it has become possible to include cache memory on the
same IC as the processor. Since the on-chip processing speed is faster than the
speed of communication between chips, an on-chip cache can be faster than an
off-chip cache. Current technology is not dense enough to allow the entire cache
to be placed on the same chip as the processor, however. For this reason, multi-
level caches have been developed, in which the fastest level of the cache, L1, is
on the same chip as the processor, and the remaining cache is placed off of the
processor chip. Data and instruction caches are separately maintained in the L1
cache. The L2 cache is unified, which means that the same cache holds both data
and instructions.

In order to compute the hit ratio and effective access time for a multilevel cache,
the hits and misses must be recorded among both caches. Equations that repre-
sent the overall hit ratio and the overall effective access time for a two-level cache
are shown below. Hy is the hit ratio for the on-chip cache, H, is the hit ratio for
the off-chip cache, and Tggg is the overall effective access time. The method can
be extended to any number of levels.

No. times accessed word is in on-chip cache

H, =
! Total number of memory accesses

No. times accessed word is in off-chip cache
No. times accessed word is not in on-chip cache

2

Terr = (No. on-chip cache hits)(On-chip cache hit time) +
(No. off-chip cache hits)(Off-chip cache hit time) +

(No. off-chip cache misses)(Off-chip cache miss time)

/ Total number of memory accesses

CACHE MANAGEMENT

Management of a cache memory presents a complex problem to the system pro-
grammer. If a given memory location represents an 1/O port, as it may in mem-
ory-mapped systems, then it probably should not appear in the cache at all. If it
is cached, the value in the I/0 port may change, and this change will not be
reflected in the value of the data stored in the cache. This is known as “stale”
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data: the copy that is in the cache is “stale” compared with the value in main
memory. Likewise, in shared-memory multiprocessor environments (see Chap-
ter 10), where more than one processor may access the same main memory,
either the cached value or the value in main memory may become stale due to
the activity of one or more of the CPUs. At a minimum, the cache in a multipro-
cessor environment should implement a write-through policy for those cache
lines which map to shared memory locations.

For these reasons, and others, most modern processor architectures allow the sys-
tem programmer to have some measure of control over the cache. For example,
the Motorola PPC 601 processor’s cache, which normally enforces a write-back
policy, can be set to a write-through policy on a per-line basis. Other instructions
allow individual lines to be specified as noncacheable, or to be marked as invalid,
loaded, or flushed.

Internal to the cache, replacement policies (for associative and set-associative
caches) need to be implemented efficiently. An efficient implementation of the
LRU replacement policy can be achieved with the Neat Little LRU Algorithm
(origin unknown). Continuing with the cache example used in Section 7.6.5, we
construct a matrix in which there is a row and a column for every slot in the
cache, as shown in Figure 7-19. Initially, all of the cells are set to 0. Each time

Cache slot
01 2 3 01 2 3 0123
5 0[0[/0]0|0 0|0f1f2f{2] ofO|1|O|12
o 1/0|0|0f0 1{0j0|0f(0| 1J0(0|0|O
§20000 210|10f({0|0| 2f1|1]|0f1
L)30000 3]0/0f({0|0| 3/0[0|O0f|O
Initial Block accesses. 0 0,2
0123 01 2 3 01 2 3 012 3
0o/j0|1f({0|0| OfO|jO|O|O|OlOf21|1f2fO00O|2|0]|1
i{ojo|ofo0| 1f2foj1|2af140(0f2|1| 1f{O|O|O0Of1
2| 1{1|{0f0| 2[1|{0f|0|0Of 2f0|0O|0Of0Of 2[f1|1|0f12
3/1|1f{1|0| 3[{1|0|2|0]| 3/0f[0|1|0f 3/0|0|0O]|O
0,23 0,231 0,2,3 15 0,2,315,4

Figure 7-19 A sequence is shown for the Neat Little LRU Algorithm for a cache with four slots.
Main memory blocks are accessed in the sequence: 0, 2, 3, 1, 5, 4.

that a slot is accessed, 1's are written into each cell in the row of the table that
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corresponds to that slot. Qs are then written into each cell in the column that
corresponds to that slot. Whenever a slot is needed, the row that contains all 0's
is the oldest and is used next. At the beginning of the process, more than one row
will contain all 0s, and so a tie-breaking mechanism is needed. The first row with
all 0’s is one method that will work, which we use here.

The example shown in Figure 7-19 shows the configuration of the matrix as
blocks are accessed in the order: 0, 2, 3, 1, 5, 4. Initially, the matrix is filled with
0’s. After a reference is made to block O, the row corresponding to block O is
filled with 1’s and the column corresponding to block O is filled with 0s. For this
example, block 0 happens to be placed in slot 0, but for other situations, block 0
can be placed in any slot. The process continues until all cache slots are in use at
the end of the sequence: 0, 2, 3, 1. In order to bring the next block (5) into the
cache, a slot must be freed. The row for slot O contains 0, and so it is the least
recently used slot. Block 5 is then brought into slot 0. Similarly, when block 4 is
brought into the cache, slot 2 is overwritten.

Despite the enormous advancements in creating ever larger memories in smaller
areas, computer memory is still like closet space, in the sense that we can never
have enough of it. An economical method of extending the apparent size of the
main memory is to augment it with disk space, which is one aspect of virtual
memory that we cover in this section. Disk storage appears near the bottom of
the memory hierarchy, with a lower cost per bit than main memory, and so it is
reasonable to use disk storage to hold the portions of a program or data sets that
do not entirely fit into the main memory. In a different aspect of virtual memory,
complex address mapping schemes are supported, which give greater flexibility in
how the memory is used. We explore these aspects of virtual memory below.

OVERLAYS

An early approach of using disk storage to augment the main memory made use
of overlays, in which an executing program overwrites its own code with other
code as needed. In this scenario, the programmer has the responsibility of man-
aging memory usage. Figure 7-20 shows an example in which a program contains
a main routine and three subroutines A, B, and C. The physical memory is
smaller than the size of the program, but is larger than any single routine. A strat-
egy for managing memory using overlays is to modify the program so that it
keeps track of which subroutines are in memory, and reads in subroutine code as
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Compiled program Physica Memory

Main Routine @ : :
\ Partition #0

Smaller
Subroutine A than
program
Partition #1
Subroutine B
Partition graph
Subroutine C

Figure 7-20 A partition graph for a program with a main routine and three subroutines.

needed. Typically, the main routine serves as the driver and manages the bulk of
the bookkeeping. The driver stays in memory while other routines are brought in
and out.

Figure 7-20 shows a partition graph that is created for the example program.
The partition graph identifies which routines can overlay others based on which
subroutines call others. For this example, the main routine is always present, and
supervises which subset of subroutines are in memory. Subroutines B and C are
kept in the same partition in this example because B calls C, but subroutine A is
in its own partition because only the main routine calls A. Partition #0 can thus
overlay partition #1, and partition #1 can overlay partition #0.

Although this method will work well in a variety of situations, a cleaner solution
might be to let an operating system manage the overlays. When more than one
program is loaded into memory, however, then the routines that manage the
overlays cannot operate without interacting with the operating system in order to
find out which portions of memory are available. This scenario introduces a great
deal of complexity into managing the overlay process since there is a heavy inter-
action between the operating system and each program. An alternative method
that can be managed by the operating system alone is called paging, which is
described in the next section.
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Paging is a form of automatic overlaying that is managed by the operating sys-
tem. The address space is partitioned into equal sized blocks, called pages. Pages
are normally an integral power of two in size such as 219 = 1024 bytes. Paging
makes the physical memory appear larger than it truly is by mapping the physical
memory address space to some portion of the virtual memory address space,
which is normally stored on a disk. An illustration of a virtual memory mapping
scheme is shown in Figure 7-21. Eight virtual pages are mapped to four physical

Virtual

addresses Virtual memory

0-1023

1024 -
2048 -
3072 -
4096 -
5120 -
6144 -
7168 -

2047
3071
4095
5119
6143
7167
8191

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Physical

Physical memory addresses

Page frame 0

Page frame 1

Page frame 2

Page frame 3

Figure 7-21 A mapping between a virtual and a physical memory.

page frames.

0- 1023
1024 - 2047
2048 - 3071
3072 - 4095

An implementation of virtual memory must handle references that are made out-
side of the portion of virtual space that is mapped to physical space. The follow-
ing sequence of events is typical when a referenced virtual location is not in
physical memory, which is referred to as a page fault:

1) A page frame is identified to be overwritten. The contents of the page
frame are written to secondary memory if changes were made to it, so that
the changes are recorded before the page frame is overwritten.

2) The virtual page that we want to access is located in secondary memory
and is written into physical memory, in the page frame located in (1) above.

3) The page table (see below) is updated to map the new section of virtual

memory onto the physical memory.
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4) Execution continues.

For the virtual memory shown in Figure 7-21, there are 213 = 8192 virtual loca-
tions and so an executing program must generate 13-bit addresses, which are
interpreted as a 3-bit page number and a 10-bit offset within the page. Given the
3-bit page number, we need to find out where the page is: it is either in one of
the four page frames, or it is in secondary memory. In order to keep track of
which pages are in physical memory, a page table is maintained, as illustrated in
Figure 7-22, which corresponds to the mapping shown in Figure 7-21.

Present bit Page frame
Page#l Disk address \L

01001011100 00
Present bit: 11101110010 | xx
0: Pageisnotin 10110010111 | O1

physical memory
1: Pageisin physical
memory

00001001111 | xx
01011100101 | 11
10100111001 | xx
00110101100 | xx
01010001011 | 10

N o g b wN R O <<
P O|O|R|O|FR|O|F

Figure 7-22 A page table for a virtual memory.

The page table has as many entries as there are virtual pages. The present bit
indicates whether or not the corresponding page is in physical memory. The disk
address field is a pointer to the location that the corresponding page can be
found on a disk unit. The operating system normally manages the disk accesses,
and so the page table only needs to maintain the disk addresses that the operating
system assigns to blocks when the system starts up. The disk addresses normally
do not change during the course of computation. The page frame field indicates
which physical page frame holds a virtual page, if the page is in physical memory.
For pages that are not in physical memory, the page frame fields are invalid, and
so they are marked with “xx” in Figure 7-22.

In order to translate a virtual address to a physical address, we take two page
frame bits from the page table and append them to the left of the 10-bit offset,
which produces the physical address for the referenced word. Consider the situa-
tion shown in Figure 7-23, in which a reference is made to virtual address
1001101000101. The three leftmost bits of the virtual address (100) identify the
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Page Offset

|1oo|1101000101| Virtual address

<
<

01001011100 | 00
11101110010 | xx
10110010111 | 01
00001001111 | xx
01011100101 [11) v
10100111001 | Xx

00110101100 | xx | 11| 1101000101
01010001011 | 10 Physical address

Page table

~N o o0k W N P O
R O|O|FR|O| | Ok

Figure 7-23 A virtual address is translated into a physical address.

page. The bit pattern that appears in the page frame field (11) is appended to the
left of the 10-bit offset (1101000101), and the resulting address
(111101000101) indicates which physical memory address holds the referenced
word.

It may take a relatively long period of time for a program to be loaded into mem-
ory. The entire program may never be executed, and so the time required to load
the program from a disk into the memory can be reduced by loading only the
portion of the program that is needed for a given interval of time. The demand
paging scheme does not load a page into memory until there is a page fault.
After a program has been running for a while, only the pages being used will be
in physical memory (this is referred to as the working set), so demand paging
does not have a significant impact on long running programs.

Consider again the memory mapping shown in Figure 7-21. The size of the vir-
tual address space is 213 words, and the physical address space is 212 words.
There are eight pages that each contain 210 words. Assume that the memory is
initially empty, and that demand paging is used for a program that executes from
memory locations 1030 to 5300. The execution sequence will make accesses to
pages 1, 2, 3, 4, and 5, in that order. The page replacement policy is FIFO. Fig-
ure 7-24 shows the configuration of the page table as execution proceeds. The
first access to memory will cause a page fault on virtual address 1030, which is in
page #1. The page is brought into physical memory, and the valid bit and page
frame field are updated in the page table. Execution continues, until page #5
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0 [0 [ 02001011100 | xx 0 [0 01001011100 | xx
1[1 [ 11101110010 00 1[1[ 11101110010 | 00

2 [0 [ 10110010111 | xx 2 [1[ 10110010111 | 01

3| 0| 00001001111 | xx | After 3| 0| 00001001111 | xx | After
4 [0 01011100101 | xx Lg‘gégl‘ 4 [ 0] 01011100101 | xx L"’;‘gézg
5|0 | 10100111001 | xx 5[0 [ 10100111001 | xx

6 | 0| 00110101100 | xx 6 [0 [ 00110101100 | xx

7 [0 | 01010001011 | xx 7 [0 [ 01010001011 | xx

0 [0 [ 02001011100 xx 0 [0 01001011100 | xx
1[1[11101110010] 00 1[0 11101110010 | xx

2 [1] 10110010111 | 01 2 [1[ 10110010111 | 01

3 [1]00001001111 | 10| After 31| 00001001111] 10|

4 [0 01011100101 | xx Lﬁa‘géo#g 4101011100101 | 11| F"
5[0 10100111001 | xx 5[ 1| 10100111001 | 00

6 | 0| 00110101100 | xx 6 [ 0| 00110101100 | xx

7 [0 [ 01010001011 | xx 7 [0 [ 01010001011 | xx

Figure 7-24  The configuration of a page table changes as a program executes. Initially, the page
table is empty. In the final configuration, four pages are in physical memory.

must be brought in, which forces out page #1 due to the FIFO page replacement
policy. The final configuration of the page table in Figure 7-24 is shown after
location 5300 is accessed.

SEGMENTATION

Virtual memory as we have discussed it up to this point is one-dimensional in
the sense that addresses grow either up or down. Segmentation divides the
address space into segments, which may be of arbitrary size. Each segment is its
own one-dimensional address space. This allows tables, stacks, and other data
structures to be maintained as logical entities that grow without bumping into
each other. Segmentation allows for protection, so that a segment may be speci-
fied as “read only” to prevent changes, or “execute only” to prevent unauthorized
copying. This also protects users from trying to write data into instruction areas.

When segmentation is used with virtual memory, the size of each segment’s
address space can be very large, and so the physical memory devoted to each seg-
ment is not committed until needed.
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Figure 7-25 illustrates a segmented memory. The executable code for a word pro-

Sa/ Address space for
Segment #0 U code segment of
Execute only word processor
Segment #1 Used/ Data space
Read/write by for user #0

user #0 Free
Segment #2 Used/ Data space
Read/write by for user #1

user#1 | Free )

Unused

Figure 7-25 A segmented memory allows two users to share the same word processor.

cessing program is loaded into Segment #0. This segment is marked as “execute
only” and is thus protected from writing. Segment #1 is used for the data space
for user #0, and is marked as “read/write” for user #0, so that no other user can
have access to this area. Segment #2 is used for the data space for user #1, and is
marked as “read/write” for user #1. The same word processor can be used by both
user #0 and user #1, in which case the code in segment #0 is shared, but each
user has a separate data segment.

Segmentation is not the same thing as paging. With paging, the user does not see
the automatic overlaying. With segmentation, the user is aware of where segment
boundaries are. The operating system manages protection and mapping, and so
an ordinary user does not normally need to deal with bookkeeping, but a more
sophisticated user such as a computer programmer may see the segmentation fre-
quently when array pointers are pushed past segment boundaries in errant pro-
grams.

In order to specify an address in a segmented memory, the user’s program must
specify a segment number and an address within the segment. The operating sys-
tem then translates the user’s segmented address to a physical address.

FRAGMENTATION

When a computer is “booted up,” it goes through an initialization sequence that
loads the operating system into memory. A portion of the address space may be
reserved for 1/0 devices, and the remainder of the address space is then available
for use by the operating system. This remaining portion of the address space may
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be only partially filled with physical memory: the rest comprises a “Dead Zone”
which must never be accessed since there is no hardware that responds to the
Dead Zone addresses.

Figure 7-26a shows the state of a memory just after the initialization sequence.

Operating Operating Operating
System System System
Program A Program A
Free Area Free Area
Program B Program B
Free Area Free Area Free Area
Program C Program C
Free Area
Free Area
Free Area
Dead Zone\ Dead Zon Dead Zonx
1/0O Space 1/0O Space 1/0O Space
€Y (b) (c)

Figure 7-26 (a) Free area of memory after initialization; (b) after fragmentation; (c) after coalescing.

The “Free Area” is a section of memory that is available to the operating system
for loading and executing programs. During the course of operation, programs of
various sizes will be loaded into memory and executed. When a program finishes
execution, the memory space that is assigned to that program is released to the
operating system. As programs are loaded and executed, the Free Area becomes
subdivided into a collection of small areas, none of which may be large enough to
hold a program that would fit unless some or all of the free areas are combined
into a single large area. This is a problem known as fragmentation, and is
encountered with segmentation, because the segments must ultimately be
mapped within a single linear address space.

Figure 7-26b illustrates the fragmentation problem. When the operating system
needs to find a free area that is large enough to hold a program, it will rarely find
an exact match. The free area will generally be larger than the program, which
has the effect of subdividing the free areas more finely as programs are mis-
matched with free areas. One method of assigning programs to free areas is called
first fit, in which the free areas are scanned until a large enough area is found
that will satisfy the program. Another method is called best fit, in which the free
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area is used that wastes the least amount of space. While best fit makes better use
of memory than first fit, it requires more time because all of the free areas must
be scanned.

Regardless of which algorithm is used, the process of assigning programs or data
to free areas tends to produce smaller free areas (Knuth, 1974). This makes it
more difficult to find a single contiguous free area that is large enough to satisfy
the needs of the operating system. An approach that helps to solve this problem
coalesces adjacent free areas into a single larger free area. In Figure 7-26b, the two
adjacent free areas are combined into a single free area, as illustrated in Figure
7-26¢.

VIRTUAL MEMORY VS. CACHE MEMORY

Virtual memory is divided into pages, which are relatively large when compared
with cache memory blocks, which tend to be only a few words in size. Copies of
the most heavily used blocks are kept in cache memory as well as in main mem-
ory, and also in the virtual memory image that is stored on a hard disk. When a
memory reference is made on a computer that contains both cache and virtual
memories, the cache hardware sees the reference first and satisfies the reference if
the word is in the cache. If the referenced word is not in the cache, then the
block that contains the word is read into the cache from the main memory, and
the referenced word is then taken from the cache. If the page that contains the
word is not in the main memory, then the page is brought into the main memory
from a disk unit, and the block is then loaded into the cache so that the reference
can be satisfied.

The use of virtual memory causes some intricate interactions with the cache. For
example, since more than one program may be using the cache and the virtual
memory, the timing statistics for two runs of a program executing on the same
set of data may be different. Also, when a dirty block needs to be written back to
main memory, it is possible that the page frame that contains the corresponding
virtual page has been overwritten. This causes the page to be loaded back to main
memory from secondary memory in order to flush the dirty block from the cache
memory to the main memory.

THE TRANSLATION LOOKASIDE BUFFER

The virtual memory mechanism, while being an elegant solution to the problem
of accessing large programs and data files, has a significant problem associated
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with it. At least two memory references are needed to access a value in memory:
One reference is to the page table to find the physical page frame, and another
reference is for the actual data value. The translation lookaside buffer (TLB) is
a solution to this problem.

The TLB is a small associative memory typically placed inside of the CPU that
stores the most recent translations from virtual to physical address. The first time
a given virtual address is translated into a physical address, this translation is
stored in the TLB. Each time the CPU issues a virtual address, the TLB is
searched for that virtual address. If the virtual page number exists in the TLB, the
TLB returns the physical page number, which can be immediately sent to the
main memory (but normally, the cache memory would intercept the reference to
main memory and satisfy the reference out of the cache.)

An example TLB is shown in Figure 7-27. The TLB holds 8 entries, for a system

Virtual page Physical
Vvalid number page number
1 01001 1100
1 10111 1001
o  ----- -
o  ----- -
1 01110 0000
ol ----- -
1 00110 0111
o  ----- -

Figure 7-27  An example TLB that holds 8 entries for a system with 32 virtual pages and 16 page
frames.

that has 32 pages and 16 page frames. The virtual page field is 5 bits wide
because there are 2° = 32 pages. Likewise, the physical page field is 4 bits wide
because there are 2%=16 page frames.

TLB misses are handled in much the same way as with other memory misses.
Upon a TLB miss the virtual address is applied to the virtual memory system,
where it is looked up in the page table in main memory. If it is found in the page
table, then the TLB is updated, and the next reference to that page will thus
result in a TLB hit.
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This section covers two topics that are of practical importance in designing
memory systems: tree decoders and content-addressable memories. The former
are required in large memories. The latter are required for associative caches, such
asa TLB, or in other situations when data must be looked up at high speed based
on its value, rather than on the address of where it is stored.

TREE DECODERS

Decoders (see Appendix A) do not scale well to large sizes due to practical limita-
tions on fan-in and fan-out. The decoder circuit shown in Figure 7-28 illustrates

20— > ! do
s> |

8—— > | dy

Figure 7-28 A conventional decoder.

the problem. For N address bits, every AND gate has a fan-in of N. Each address
line is fanned out to 2N AND gates. The circuit depth is two gates.

The circuit shown in Figure 7-29a is a tree decoder, which reduces the fan-in
and fan-out by increasing circuit depth. For this case, each AND gate has a
fan-in of F (for this example, F = 2) and only the address line that is introduced
at the deepest level (ag here) is fanned out to 2N/2 AND gates. The depth has
now increased to IogF(ZN). The large fan-out for the higher order address bits
may be a problem, but this can be easily fixed without increasing the circuit
depth by adding fan-out buffers in the earlier levels, as shown in Figure 7-29b.

Thus, the depth of a memory decoder tree is IogF(ZN), the width is 2N, and the
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Figure 7-29 (a) A tree decoder; (b) a tree decoder with fan-ins and fan-outs of two.
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maximum fan-in and fan-out of the logic gates within the decoder is F.

DECODERS FOR LARGE RAMS

For very large RAMs, if the 2-1/2D decoding scheme is not used, tree decoders
are employed to keep fanin and fanout to manageable levels. In a conventional
RAM an M-bit wide address uniquely identifies one memory location out of a
memory space of 2M locations. In order to access a particular location, an address
is presented to the root of a decoder tree containing M levels and 2M Jeaves.
Starting with the root (the top level of the tree) a decision is made at each it level
of the tree, corresponding to the it" bit of the address. If the i" bit is 0 at the it"
level, then the tree is traversed to the left, otherwise the tree is traversed to the
right. The target leaf is at level M — 1 (counting starts at 0). There is exactly one
leaf for each memory address.

The tree structure results in an access time that is logarithmic in the size of the
memory. That is, if a RAM contains N words, then the memaory can be accessed
in OlogeNDCtime, where F is the fan-out of the logic gates in the decoder tree
(here, we assume a fan-out of two). For a RAM of size N, M = [ogeNJaddress
bits are needed to uniquely identify each word. As the number of words in the
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memory grows, the length of the address grows logarithmically, so that one level
of depth is added to the decoder tree each time the size of the memory doubles.
As a practical example, consider a 128 megaword memory that requires 27 levels
of decoding (227 = 128 Mwords). If we assume that logic gates in the decoding
tree switch in 2 ns, then an address can be decoded in 54 ns.

A four level decoder tree for a 16-word RAM is shown in Figure 7-30. As an

1011

N
" Level 0 \i"_

N N
00__ 01__ 10__ 11
Level 1 /
N N N N

000_ 001_ 010_ 011_ 100_ 101_ 110_ 111
Level 2

IIIIIIIEEII:IIII

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Figure 7-30 A decoding tree for a 16-word random access memory.

example of how the decoder tree works, the address 1011 is presented at the root
node. The most significant bit in the address is a 1 so the right path is traversed at
Level O as indicated by the arrow. The next most significant bit is a 0 so the left
path is traversed at Level 1, the next bit is a 1 so the right path is traversed at
Level 2, and the least significant bit is a 1 so the rightmost path is traversed next
and the addressed leaf is then reached at Level 3.

CONTENT ADDRESSABLE (ASSOCIATIVE) MEMORIES

In an ordinary RAM, an address is applied to the memory, and the contents of
the given location are either read or written. In a content addressable memory
(CAM), also known as an associative memory, a word composed of fields is
applied to the memory and the resulting address (or index) is returned if the
word or field is present in the memory. The physical location of a CAM word is
generally not as significant as the values contained in the fields of the word. Rela-
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tionships between addresses, values, and fields for RAM and CAM are shown in
Figure 7-31.

Address Value Fieldl Fied2 Field3
0000A 000 OFOF0000 000 A 9E
0000A 004 186734F1 011 0 FO
0000A 008 0F000000 149 7 01
0000A00C FE681022 091 4 00
0000A010 3152467C 000 E FE
0000A014 C3450917 749 C 6E
0000A018 00392B11 000 0 50
0000A01C 10034561 575 1 84

32 bits 32 bits ~<12 bits> =<4 hits>=<8 hits>

Random access memory Content addressable memory

Figure 7-31  Relationships between random access memory and content addressable memory.

Values are stored in sequential locations in a RAM, with an address acting as the
key to locate a word. Four-byte address increments are used in this example, in
which the word size is four bytes. Values are stored in fields in the CAM, and in
principle any field of a word can be used to key on the rest of the word. If the
CAM words are reordered, then the contents of the CAM are virtually
unchanged since physical location has no bearing on the interpretation of the
fields. A reordering of the RAM may change the meanings of its values entirely.
This comparison suggests that CAM may be a preferred means for storing infor-
mation when there is a significant cost in maintaining data in sorted order.

When a search is made through a RAM for a particular value, the entire memory
may need to be searched, one word at a time, when the memory is not sorted.
When the RAM is maintained in sorted order, a number of accesses may still be
required to either find the value being searched or to determine the value is not
stored in the memory. In a CAM, the value being searched is broadcast to all of
the words simultaneously, and logic at each word makes a field comparison for
membership, and in just a few steps the answer is known. A few additional steps
may be needed to collect the results but in general the time required to search a
CAM s less than for a RAM in the same technology, for a number of applica-
tions.

Except for maintaining tags in cache memories and in translating among net-
work addresses for routing applications (see Chapter 8), CAMs are not in com-
mon use largely due to the difficulty of implementing an efficient design with
conventional technology. Consider the block diagram of a CAM shown in Figure
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7-32. A Central Control unit sends a comparand to each of 4096 cells, where

Centrd |
Control
Comparand
Mask
0
©
& Celo [ " To -
IS
IS
Q
2 - 8
= Cell |_ T, o
c [a)]
S =
B k=
9]
5 cell2 |- s g
E I I O
I 1 %
I I [a)
1 I
1 |
Cell 4095 | " | Taogs -

Figure 7-32  Overview of CAM (Foster, 1976).

comparisons are made. The result is put in the Tag bits T; which are collected by
a Data Gathering Device and sent to the Central Control unit (Note that “Tag”
is used differently here than in cache memory). When the Central Control unit
loads the value to be searched into the comparand register, it sets up a mask to
block out fields that are not part of the value. A small local processor in each cell
makes a comparison between its local word and the broadcast value and reports
the result of the comparison to the Data Gathering Device.

A number of problems arise when an attempt is made to implement this CAM
architecture in a conventional technology such as very large scale integration
(VLSI). The broadcast function that sends the comparand to the cells can be
implemented with low latency if a tree structure is used. An H-tree (Mead and
Conway, 1980) can be used for the tree layout if it will fit on a single IC. If the
tree cannot be contained on a single chip, then connections must be made
among a number of chips, which quickly limits chip density. For example, a
node of a tree that has a single four-bit input and two four-bit outputs needs 12
input/output (1/0) pins and three control pins if only one node is placed on a
chip. A three node subtree needs 25 pins and a seven node subtree needs 45 pins
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as illustrated in Figure 7-33. A 63 node subtree requires 325 pins, excluding

. ita S
Data: four bits 4 /LJControI:onebit 4

per channel

per channel

Figure 7-33  Addressing subtrees for a CAM.

power and control pins, which is getting close to the limit of most present day
packaging technologies which do not go much higher than 1000 pins per pack-
age. A useful CAM would contain thousands of such nodes with wider data
paths, so the I/0O bandwidth limit is realized early in the design of the CAM.
Compromises can be made by multiplexing data onto the limited number of I/0
connections but this reduces effective speed, which is a major reason for using a
CAM in the first place.

Although implementations of CAMs are difficult, they do find practical uses,
such as in TLBs and in computer networks. One application is in a network con-
troller which receives data packets from several processors and then distributes
those packets back to the processors or to other network controllers. Each pro-
cessor has a unique address which the CAM keys on to determine if the target
processor for a packet is in its own network or if it must be forwarded to another
network.

MEMORY DESIGN EXAMPLE: A DUAL-PORT RAM

A dual-read, or dual-port RAM allows any two words to be simultaneously read
from the same memory. As an example, we will design a 220 word by 8-bit
dual-read RAM. For our design, any two words can be read at a time, but only
one word can be written at a time. Our approach is to create two separate 2%°
word memories. When writing into the dual-read RAM, the address lines of both
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single-read RAMs are set identically and the same data is written to both sin-
gle-read memories. During a read operation, the address lines of each single-read
RAM are set independently, so that two different words can be simultaneously
read.

Figure 7-34 shows a block diagram for the dual-read RAM. During a write oper-

Do—-D7 > Data In
20
A Address —> s L 7 5 PortA
Ao—Ap| ARAM
WR CS
T A
20
A Address—F—— > Dataln
Ag—A1g /L 20 220 Word x o
20 / > 8bits L /5 portB
B Address—+— B RAM
BO —_ Blg /( WR CS
£ X
WR >
—} cs

Figure 7-34  Block diagram of dual-read RAM.

ation, the A address is used for both single-read RAMs. Tri-state buffers at the B
RAM address inputs are controlled by the WR line. When WR=0, the A address
is used at the B address input, otherwise, the B address is used at the B address
input. The numbers that appear adjacent to the slashes indicate the number of
individual lines that are represented by the single line. An 8 next to a slash indi-
cates 8 lines, and a 20 next to a slash indicates 20 lines.

Each tri-state buffer has 20 input lines and 20 output lines, but Figure 7-34 uses
a notation in which a single buffer represents 20 separate tri-state buffers that
share the same control input. A buffer delay is inserted on the WR line in order
to compensate for the delay on the complemented WR line, so that the A and B
addresses are not unintentionally simultaneously enabled. =
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There was a time when computer technology would be pushed from the labora-
tory into the marketplace. As the consumer marketplace for computing devices
exploded, the “technology push” was replaced by “market pull,” and consumer
demand then dominated the preferences of technologists when it came to devel-
oping a new memory technoloy. High performance, expensive memory for
high-end processors was displaced by high density, low-cost memory for con-
sumer electronics, such as videogames. It became more profitable for memory
manufacturers to address the needs of high volume consumer markets, rather
than devote costly chip fabrication facilities to a comparatively small high-end
market.

The consumer electronics industry now dominates the memory market, and
even high-end, non-consumer processors make heavy use of consumer electron-
ics technology, exploiting architectural enhancements instead, or innovations in
supporting technologies (such as high speed interconnects) to compensate for the
performance shortcomings of what we might call “videogame memory.”

Videogame memory is not all that low-end, however, and in fact, makes use of
extraordinary technology enhancements that squeeze the most performance out
of ever denser, low-cost devices. A leading memory technology that is being
introduced into Intel-based personal computers in 1999 was developed by Ram-
bus, Inc. The Rambus DRAM (RDRAM) retrieves a block of 8 bytes internal to
the DRAM chip on every access, and multiplexes the 8 bytes onto a narrow 8-bit
or 16-bit channel, operating at a rate of 800 MHz (or higher).

A typical DRAM core (that is, the storage portion of an ordinary DRAM) can
store or retrieve a line of 8 bytes with a 100 MHz cycle. This is internal to the
DRAM chip: most DRAMs only deliver one byte per cycle, but the RDRAM
technology can multiplex that up to 1 byte per cycle using a higher external clock
of 800 MHz. That higher rate is fed to a memory controller (the “chipset” on an
Intel machine) which demuxes it to a 32-bit wide data stream at a lower rate,
such as 200 MHz, going into a Pentium (or other processor chip).

The Rambus “RIMM” modules (Rambus Inline Memory Modules) look similar
to ordinary SIMMs and DIMMs, but they operate differently. The Rambus
memory uses microstrip technology (also known as transmission lines) on the
motherboard, which implements a crude shield that reduces radio frequency
(RF) effects that interfere with data traveling through wires on the motherboard
(which are called board traces). In designing a printed circuit board (PCB) for
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Rambus technology, the critical parameters are (1) dielectric thickness of the
PCB, (2) separation of the memory modules, and (3) trace width. There must be
a ground plane (an electrical return path) beneath every signal line, with no vias
(connections between board layers) along the path. All signals go on the top
layer of the PCB. (A PCB can have a number of layers, typically no more than 8).
The memory controller and memory modules must all be equally spaced, such as
.5 inches from the memory controller to the first RIMM, then .5 in to the next,
etc.

The “Rambus Channel” is made up of transmission line traces. The trace widths
end up being about twice as wide as ordinary traces, on the order of 12 mils (300
microns). Although 300 microns is relatively small for a board trace, if we want
to send 128 signals over a PCB, using a 600 micron pitch (center-to-center spac-
ing) with 300 microns between 300 micron traces, this corresponds to a foot-
print of 128 x 600 microns = 76 mm. This is a large footprint compared with
lower speed solutions that allow a much closer packing denisty.

In reality, the Rambus Channel only has 13 high speed signals, (the address is
serialized onto a single line, there are 8 data lines, 1 parity line, 2 clock lines, and
1 command line) and so the seemingly large footprint is not a near-term prob-
lem. With a 16-bit version of the Rambus Channel on the horizon, the band-
width problem appears to be in hand for a number of years using this technology.
Extensibility to large word widths such as 64 bits or 128 bits will pose a signifi-
cant challenge down the road, however, because the chipset will need to support
that same word width — a formidable task with current packaging methods, that
already have over 500 pins on the chipset.

Although Rambus memory of this type became available in 1998, the RIMM
modules were not widely available until 1999, timed for the availability of a new
memory controller (chipset) for the RIMMs. The memory controller is an
important aspect of this type of memory because the view of memory that the
CPU perceives is different from the physical memory.

Rambus memory is more expensive than conventional DRAM memory, but
overall system cost can be reduced, which makes it attractive in low-cost, high
performance consumer electronics such as the Nintendo 64 video game console.
The Nintendo 64 (see Figure 7-35) has four primary chips: a 64-bit MIPS
RS4300i CPU; a Reality coprocessor which integrates all graphics, audio and
memory management functions; and two Rambus memory chips.
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Figure 7-35 Rambus technology on the Nintendo 64 motherboard (top left and bottom right) en-
ables cost savings over the conventional Sega Saturn motherboard design (bottom left). The Ninten-
do 64 uses costlier plug-in cartridges (top right), as opposed to inexpensive CD-ROMs used by the
Sega Saturn. [Photo source: Rambus, Inc.]

The Rambus technology provides the Nintendo 64 with a bandwidth of 562.5
MB/s using a 31-pin interface to the memory controller. By comparison, a sys-
tem using typical 64-bit-wide synchronous DRAMs (SDRAMS) requires a
110-pin interface to the memory controller. This reduction in pin count allows
the memory controller to fit on the same die (the silicon chip) as the graphics
and sound functions, in a relatively low-cost, 160-pin packaged chip.

The Rambus memory subsystem is made up of two memory chips which occupy
1.5 square inches of board space. An equivalent SDRAM design would require 6
square inches of board space. The space savings of using the Rambus approach
enabled Nintendo to fit all of its components on a board measuring five by six
inches, which is one quarter the size of the system board used in the competing
Sega Saturn. In addition, Nintendo was able to use only a two-layer board
instead of the four layers used in the Sega Saturn.

The cost savings Nintendo realized by choosing the Rambus solution over the
64-bit SDRAM approach are considerable, but should be placed in perspective
with the overall market. The ability to use a two-layer implementation saved
Nintendo $5 per unit in manufacturing costs. Taken altogether, Nintendo esti-
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mates the total bill of materials cost savings over an equivalent SDRAM-based
design was about 20 percent.

These cost savings need to be placed in perspective with the marketplace, how-
ever. The competing Sega Saturn and Sony Playstation use CD-ROMs for game
storage, which cost under $2 each to mass produce. The Nintendo 64 uses a
plug-in ROM cartridge that costs closer to $10 each to mass produce, and can
only store 1% of what can be stored on a CD-ROM. This choice of media may
have a great impact on the overall system architecture, and so the Rambus
approach may not benefit all systems to the same degree. Details matter a great
deal when it comes to evaluating the impact of a new technology on a particular
market, or even a segment of a market.

The Intel Pentium processor is typical of modern processors in its memory con-
figurations. Figure 7-36 shows a simplified diagram of the memory elements and

Pentium Processor Chip

CPU 256_L- Level 1 H Level 2 Main Memory

| Instruction R H Cache Up to 8GB
<> cache >, Up to n

8KB | TLB <! o » 512KB |« >

<> !

Level 1
<—>»| Data Cache [<«—»

8 KB

TLB

Figure 7-36  The Intel Pentium memory system.

data paths. There are two L1 caches on board the actual Pentium chip, an
instruction, or I-cache, and a data, or D-cache. Each cache has a 256 bit (32
byte) line size, with an equally-sized data path to the CPU. The L1 caches are
2-way set associative, and each way has a single LRU bit. The D-cache can be set
to write-through or writeback on a per-line basis. The D cache is write no-allo-
cate: misses on writes do not result in a cache fill. Each cache is also equipped
with a TLB that translates virtual to physical addresses. The D-cache TLB is
4-way set associative, with 64 entries, and is dual-ported, allowing two simulta-
neous data reference translations. The I-cache TLB is 4-way set associative with
32 entries.
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The L2 cache, if present, is 2-way set associative, and can be 256 KB or 512 KB
in size. The data bus, shown as “n” in the figure, can be 32, 64, or 128 bits in

size.

THE MESI PROTOCOL

The Pentium D cache, and the L2 cache if present support the MESI cache
coherency protocol for managing multiprocessor access to memory. Each
D-cache line has two bits associated with it that store the MESI state. Each cache

line will be in one of the four states:

* M - Modified. The contents of the cache line have been modified and
are different from main memory.

 E - Exclusive. The contents of the cache line have not been modified,
and are the same as the line in main memory.

e S - Shared. The line is, or may be shared with another cache line
belonging to another processor.

| - Invalid. The line is not in the cache. Reads to lines in the | state will
result in cache misses.

Table 7- 2 shows the relationship between the MESI state, the cache line, and

Cache Line State M E S |
Modified Exclusive Shared Invalid
Cache line valid? Yes Yes Yes No
Copy in memory is... | ...out of date. ...valid ...valid —
Copies exist in other No No Maybe Maybe
caches?
A write to this line... | ..doesnotgo | ...doesnotgo | ...goesto the bus | ...goesdirectly
to the bus to the bus and updates cache to the bus
Table 7-2 MESI cache line states.
t Taken from Pentium Processor User's Manual, Volume 3, Architecture and Programming

Manual, © Intel Corporation, 1993.
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the equivalent line in main memory. The MESI protocol is becoming a standard
way of dealing with cache coherency in multiprocessor systems.

The Pentium processor also supports up to six main memory segments (there can
be several thousand segments, but no more than 6 can be referenced through the
segment registers.) As discussed in the chapter, each segment is a separate address
space. Each segment has a base—a starting location within the 32-bit physical
address space, and a limit, the maximum size of the segment. The limit may be
either 218 bytes or 216 x 212 bytes in size. That is, the granularity of the limit
may be one byte or 212 bytes in size.

Paging and segmentation on the Pentium can be applied in any combination:

Unsegmented, unpaged memory: The virtual address space is the same as the phys-
ical address space. No page tables or mapping hardware is needed. This is good
for high performance applications that do not have a lot of complexity, that do
not need to support growing tables, for example.

Unsegmented, paged memory: Same as for the unsegmented, unpaged memory
above, except that the linear address space is larger as a result of using disk stor-
age. A page table is needed to translate between virtual and physical addresses. A
translation lookaside buffer is needed on the Pentium core, working in conjunc-
tion with the L1 cache, to reduce the number of page table accesses.

Segmented, unpaged memory: Good for high complexity applications that need to
support growing data structures. This is also fast: segments are fewer in number
than pages in a virtual memory, and all of the segmentation mapping hardware
typically fits on the CPU chip. There is no need for disk accesses as there would
be for paging, and so access times are more predictable than when paging is used.

Segmented, paged memory: A page table, segment mapping registers, and TLB all
work in conjunction to support multiple address spaces.

Segmentation on the Intel Pentium processor is quite powerful but is also quite
complex. We only explore the basics here, and the interested reader is referred to
(Intel, 1993) for a more complete description.
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m SUMMARY

B FURTHER READING

(Stallings, 1993) and (Mano, 1991) give readable explanations of RAM. A hum-
ber of memory databooks (Micron, 1992) and (Texas Instruments, 1991) give
practical examples of memory organization. (Foster, 1976) is the seminal refer-
ence on CAM. (Mead and Conway, 1980) describe the H-tree structure in the
context of VLSI design. (Franklin et al, 1982) explores issues in partitioning
chips, which arise in splitting an H-tree for a CAM. (Sedra and Smith, 1997)
discuss the implementation of several kinds of static and dynamic RAM.

(Hamacher et al, 1990) gives a classic treatment of cache memory. (Tanenbaum,
1990) gives a readable explanation of virtual memory. (Hennessy and Patterson,
1995) and (Przybylski, 1990) cover issues relating to cache performance. Seg-
mentation on the Intel Pentium processor is covered in (Intel, 1993). Kingston
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m PROBLEMS

A ROM lookup table and two D flip-flops implement a state machine as
shown in the diagram below. Construct a state table that describes the

machine.
ROM contents

X—>

Location Value

AAA|IRRR
0 00fO0O0OI1
001110
01 0100
011000
100|101
1 0 1 1 1 1
1101001
1111000

YY

Ao Ro
A; ROM R;
A2 R2

CLK

Fill in four memory locations for the lookup table shown in Figure 7-11
in which each of the four operations: add, subtract, multiply, and divide are
performed on A=16 and B=4. Show the address and the value for each case.

Design an eight-word, 32-bit RAM using 8x8 RAMs.

Design a 16-word, four-bit RAM using 4x4 RAMs and a single external

decoder.

Given a number of n-word by p-bit RAM chips:

(@) Show how to construct an n-word x 4p-bit RAM using these chips. Use
any other logic components that you have seen in the text that you feel are

needed.

(b) Show how to construct a 4n-word x p-bit RAM using these chips.
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Draw the circuit for a 4-to-16 tree decoder, using a maximum fan-in and
fan-out of two.

A direct mapped cache consists of 128 slots. Main memory contains 16K
blocks of 16 words each. Access time of the cache is 10 ns, and the time
required to fill a cache slot is 200 ns. Load-through is not used; that is, when
an accessed word is not found in the cache, the entire block is brought into
the cache, and the word is then accessed through the cache. Initially, the cache
is empty. Note: When referring to memory, 1K = 1024.

(@) Show the format of the memory address.

(b) Compute the hit ratio for a program that loops 10 times from locations 15
— 200. Note that although the memory is accessed twice during a miss (once
for the miss, and once again to satisfy the reference), a hit does not occur for
this case. To a running program, only a single memory reference is observed.

(c) Compute the effective access time for this program.

A fully associative mapped cache has 16 blocks, with eight words per
block. The size of main memory is 216 words, and the cache is initially empty.
Access time of the cache is 40 ns, and the time required to transfer eight words
between main memory and the cache is 1 ps.

(a) Compute the sizes of the tag and word fields.

(b) Compute the hit ratio for a program that executes from 20-45, then loops
four times from 28-45 before halting. Assume that when there is a miss, that
the entire cache slot is filled in 1 ps, and that the first word is not seen by the
CPU until the entire slot is filled. That is, assume load-through is not used.
Initially, the cache is empty.

(c) Compute the effective access time for the program described in part (b)
above.

Compute the total number of bits of storage needed for the associative
mapped cache shown in Figure 7-13 and the direct mapped cache shown in
Figure 7-14. Include Valid, Dirty, and Tag bits in your count. Assume that the
word size is eight bits.
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(a) How far apart do successive memory references need to be spaced to
cause a miss on every cache access using the direct mapping parameters shown
in Figure 7-14?

(b) Using your solution for part (a) above, compute the hit ratio and effective
access time for that program with Tiss = 1000 ns, and T ;¢ = 10 ns. Assume
that load-through is used.

A computer has 16 pages of virtual address space but only four physical
page frames. Initially the physical memory is empty. A program references the
virtual pages in the order: 024524311 2 10.

(@) Which references cause a page fault with the LRU page replacement pol-
icy?

(b) Which references cause a page fault with the FIFO page replacement pol-
icy?

On some computers, the page table is stored in memory. What would
happen if the page table is swapped out to disk? Since the page table is used
for every memory reference, is there a page replacement policy that guarantees
that the page table will not get swapped out? Assume that the page table is
small enough to fit into a single page (although usually it is not).

A virtual memory system has a page size of 1024 words, eight virtual
pages, four physical page frames, and uses the LRU page replacement policy.
The page table is as follows:

Present bit Page frame field
Pagi# Disk iddress
01001011100 | xx
11101110010 | xx
10110010111 | 0O
00001001111 | xx
01011100101 | 01
10100111001 | xx
00110101100 | 11
01010001011 | xx

~N o ok~ WN - O
O|FRr|O|FR|O|Fr|OfOo
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(@) What is the main memory address for virtual address 4096?
(b) What is the main memory address for virtual address 1024?
(c) A fault occurs on page 0. Which page frame will be used for virtual page 0?

When running a particular program with N memory accesses, a computer
with a cache and paged virtual memory generates a total of M cache misses
and F page faults. T, is the time for a cache hit; T, is the time for a main
memory hit; and T is the time to load a page into main memory from the
disk.

(a) What is the cache hit ratio?

(b) What is the main memory hit ratio? That is, what percentage of main
memory accesses do not generate a page fault?

(c) What is the overall effective access time for the system?

A computer contains both cache and paged virtual memories. The cache
can hold either physical or virtual addresses, but not both. What are the issues
involved in choosing between caching virtual or physical addresses? How can
these problems be solved by using a single unit that manages all memory map-
ping functions?

How much storage is needed for the page table for a virtual memory that
has 232 bytes, with 212 bytes per page, and 8 bytes per page table entry?
Compute the gate input count for the decoder(s) of a 64 x 1-bit RAM for
both the 2D and the 2-1/2D cases. Assume that an unlimited fan-in/fan-out
is allowed. For both cases, use ordinary two-level decoders. For the 2 1/2D
case, treat the column decoder as an ordinary MUX. That is, ignore its behav-
ior as a DEMUX during a write operation.

How many levels of decoding are needed for a 22 word 2D memory if a
fan-in of four and a fan-out of four are used in the decoder tree?

A video game cartridge needs to store 22 bytes in a ROM.
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(a) If a 2D organization is used, how many leaves will be at the deepest level of
the decoder tree?

(b) How many leaves will there be at the deepest level of the decoder tree for a
2-1/2D organization?

The contents of a CAM are shown below. Which set of words will
respond if a key of 00A00020 is used on fields 1 and 3? Fields 1 and 3 of the
key must match the corresponding fields of a CAM word in order for that
word to respond. The remaining fields are ignored during the matching pro-
cess but are included in the retrieved words.

Fidd=4 3 2 1 0
F 1|Alo ofo 2|8
0 4[2|9 D|1 F|o
3 2|Al1 1|0 3|E
D F[A[O 5[0 2|D
00[5(3 7|F 2|4

When the TLB shown in Figure 7-27 has a miss, it accesses the page table
to resolve the reference. How many entries are in that page table?



