"u_ "
=

CHAPTER 10 ADVANCED TOPICS 381

ADVANCED TOPICS

In this chapter, we explore a few advanced topics in computer architecture. The
early portion of the chapter covers parallel architecture, which is an approach at
improving performance by applying multiple computers to work on the same
problem. The latter portion of the chapter covers network architecture at a
greater depth than is covered in the introduction to local area networks (LANS)
covered in Chapter 8.

One method of improving the performance of a processor is to decrease the time
needed to execute instructions. This will work up to a limit of about 400 MHz
(Stone, 1991), at which point an effect known as ringing on busses prohibits
further speedup with conventional bus technology. This is not to say that higher
clock speeds are not possible, but that “shared bus” approaches become impracti-
cal at these speeds. Commercial microprocessors already operate at these speeds,
and as conventional architectural approaches to improving performance wear
out, we need to consider alternative methods of improving performance.

One alternative approach is to increase the number of processors, and decom-
pose and distribute a single program onto the processors. This approach is
known as parallel processing, because a number of processors work collectively,
in parallel, on a common problem. We see an example of parallel processing in
Chapter 9 with pipelining. For that case, four processors are connected in series
(Figure 9-6), each performing a different task, like an assembly line in a factory.
The interleaved memory described in Chapter 6 is another example of pipelin-

ing.

A parallel architecture can be characterized in terms of three parameters: (1) the

382

CHAPTER 10

ADVANCED TOPICS

number of processing elements (PEs); (2) the interconnection network among
the PEs; and (3) the organization of the memory. In the four-stage instruction
pipeline of Figure 9-6, there are four PEs. The interconnection network among
the PEs is a simple ring. The memory is an ordinary RAM that is external to the
pipeline.

Characterizing the architecture of a parallel processor is a relatively easy task, but
measuring the performance is not nearly so simple. Although we can easily mea-
sure the increased speed that a simple enhancement like a pipeline offers, the
overall speedup is data dependent: not all programs and data sets map well onto
a pipelined architecture. Other performance considerations of pipelined architec-
tures that are also data dependent are the cost of flushing a pipeline, the increased
area cost, the latency (input to output delay) of the pipeline, etc.

A few common measures of performance are parallel time, speedup, efficiency,
and throughput. The parallel time is simply the absolute time needed for a pro-
gram to execute on a parallel processor. The speedup is the ratio of the time for a
program to execute on a sequential (non-parallel, that is) processor to the time
for that same program to execute on a parallel processor. In a simple form, we
can represent speedup (S) as:

S = TSe_quentiul

TPamllel

Since a sequential algorithm and a parallel version of the same algorithm may be
programmed very differently for each machine, we need to qualify Tseqential and
Tparallel SO that they apply to the best implementation for each machine.

There is more to the story. If we want to achieve a speedup of 100, it is not
enough to simply distribute a single program over 100 processors. The problem
is that not many computations are easily decomposed in a way that fully utilizes
the available PEs. If there are even a small number of sequential operations in a
parallel program, then the speedup can be significantly limited. This is summa-
rized by Amdahl’s law, in which speedup is expressed in terms of the number of
processors p and the fraction of operations that must be performed sequentially f:

1
1-f
=

S =

For example, if f = 10% of the operations must be performed sequentially, then

CHAPTER 10 ADVANCED TOPICS 383

speedup can be no greater than 10 regardless of how many processors are used:

1
S = 5.3
0.1+%2 S = 109:10
10 0.1+ =2

p = 10 processors ®

p = o processors

This brings us to measurements of efficiency. Efficiency is the ratio of speedup
to the number of processors used. For a speedup of 5.3 with 10 processors, the
efficiency is:

5.3

10 = .53, 0r 53%

If we double the number of processors to 20, then the speedup increases to 6.9
but the efficiency reduces to 34%. Thus, parallelizing an algorithm can improve
performance to a limit that is determined by the amount of sequential opera-
tions. Efficiency is drastically reduced as speedup approaches its limit, and so it
does not make sense to simply use more processors in a computation in the hope
that a corresponding gain in performance will be achieved.

Throughput is a measure of how much computation is achieved over time, and
is of special concern for 1/0 bound and pipelined applications. For the case of a
four stage pipeline that remains filled, in which each pipeline stage completes its
task in 10 ns, the average time to complete an operation is 10 ns even though it
takes 40 ns to execute any one operation. The overall throughput for this situa-
tion is then:

0.19%?0” = 10 operations per second.

THE FLYNN TAXONOMY

Computer architectures can be classified in terms of their instruction streams
and their data streams, using a taxonomy developed by M. J. Flynn (Flynn,
1972). A conventional sequential processor fits into the single-instruction
stream, single data stream (SISD) category, as illustrated in Figure 10-1a. Only
a single instruction is executed at a time in a SISD processor, although pipelining
may allow several instructions to be in different phases of execution at any given

CHAPTER 10 ADVANCED TOPICS

Controller
Instruction Data .
Stream Stream Instruction Stream
l l Data Data Data Data

Stream,, | Stream, | Stream; | Stream,

. boad vy v

Dat Out PE,| ... |PE, PE; PEy (b)
a Ou
' 4 4 4
@ Data Data Data Data
Out, Out, Out,y Outy

Interconnection Network

Instruction Data Instruction Data Instruction Data
Stream,, Stream,, Stream; Stream; Streamg Stream,

N R S S N

Uniprocessor Uniprocessor Uniprocessor
(©)
Data . Data Data
Out, Outy Outy
Interconnection Network
Instruction Instruction Instruction
@ Streamg Stream; Stream,,
Data Vector Vector Vector Data
In > Unit, Unity Unit,, > out

Figure 10-1 Classification of architectures according to the Flynn taxonomy: (a) SISD; (b) SIMD;
(c) MIMD; (d) MISD.

time.

In a single instruction stream, multiple data stream (SIMD) processor, several
identical processors perform the same sequence of operations on different data
sets, as illustrated in Figure 10-1b. A SIMD system can be thought of as a room
filled with mail sorters, all sorting different pieces of mail into the same set of
bins.

CHAPTER 10 ADVANCED TOPICS 385

In a multiple instruction stream, multiple data stream (MIMD) processor,
several processors perform different operations on different data sets, but are all
coordinated to execute a single parallel program, as illustrated in Figure 10-1c.
An example of a MIMD processor is the Sega home video entertainment system,
which has four processors for (1) sound synthesis (a Yamaha synthesis processor);
(2) sound filtering (a Texas Instruments programmable sound generator); (3)
program execution (a 68000); and (4) background processing (a Z80). We will
see more of the Sega Genesis in the Case Study at the end of the chapter.

In a multiple instruction stream, single data stream (MISD) processor, a sin-
gle data stream is operated on by several functional units, as illustrated in Figure
10-1d. The data stream is typically a vector of several related streams. This con-
figuration is known as a systolic array, which we see in Chapter 3 in the form of
an array multiplier.

INTERCONNECTION NETWORKS

When a computation is distributed over a number of PEs, the PES need to com-
municate with each other through an interconnection network. There is a host
of topologies for interconnection networks, each with their own characteristics in
terms of crosspoint complexity (an asymptotic measure of area), diameter (the
length of the worst case path through the network), and blocking (whether or
not a new connection can be established in the presence of other connections). A
few representative topologies and control strategies for configuring networks are
described below.

One of the most powerful network topologies is the crossbar, in which every PE
is directly connected to every other PE. An abstract view of a crossbar is illus-
trated in Figure 10-2a, in which four PEs are interconnected. In a closeup view
illustrated in Figure 10-3, the crossbar contains crosspoint switches, which are
configurable devices that either connect or disconnect the lines that go through
it. In general, for N PEs, the crosspoint complexity (the number of crosspoint
switches) is N2. In Figure 10-2a, N = 4 (not 8) because the output ports of the
PEs on the left and the input ports of the PEs on the right belong to the same
PEs. The crosspoint complexity is thus 42 = 16. The network diameter is 1 since
every PE can directly communicate with every other PE, with no intervening
PEs. The number of crosspoint switches that are traversed is not normally con-
sidered in evaluating the network diameter. The crossbar is strictly nonblock-
ing, which means that there is always an available path between every input and
output regardless of the configuration of existing paths.

386 CHAPTER 10 ADVANCED TOPICS

@ (b) (©
(d) (© (f)
©) (h)

Figure 10-2 Network topologies: (a) crossbar; (b) bus; (c) ring; (d) mesh; (e) star; (f) tree; (g) perfect
shuffle; (h) hypercube.

Source 0 O
Source 1 ()
Source 2 ()
Source 3 O

[
Crosspoint

Destination 0 ()
Destination 1 ()
Destination 2 ()
Destination 3 ()

Figure 10-3 Internal organization of a crossbar.

At the other extreme of complexity is the bus topology, which is illustrated in
Figure 10-2b. With the bus topology, a fixed amount of bus bandwidth is shared
among the PEs. The crosspoint complexity is N for N PEs, and the network
diameter is 1, so the bus grows more gracefully than the crossbar. There can only

CHAPTER 10 ADVANCED TOPICS 387

be one source at a time, and there is normally only one receiver, so blocking is a
frequent situation for a bus.

In a ring topology, there are N crosspoints for N PEs as shown in Figure 10-2c.
As for the crosshar, each crosspoint is contained within a PE. The network diam-
eter is N/2, but the collective bandwidth is N times greater than for the case of
the bus. This is because adjacent PEs can communicate directly with each other
over their common link without affecting the rest of the network.

In the mesh topology, there are N crosspoints for N PEs, but the diameter is only
2./N as shown in Figure 10-2d. All PEs can simultaneously communicate in just
3.J/N steps, as discussed in (Leighton, 1992) using an offline routing algorithm
(in which the crosspoint settings are determined external to the PEs).

In the star topology, there is a central hub through which all PEs communicate as
shown in Figure 10-2e. Since all of the connection complexity is centralized, the
star can only grow to sizes that are bounded by the technology, which is normally
less than for decentralized topologies like the mesh. The crosspoint complexity
within the hub varies according to the implementation, which can be anything
from a bus to a crossbar.

In the tree topology, there are N crosspoints for N PEs, and the diameter is
2log,N — 1 as shown in Figure 10-2f. The tree is effective for applications in
which there is a great deal of distributing and collecting of data.

In the perfect shuffle topology, there are N crosspoints for N PEs as shown in
Figure 10-2g. The diameter is log,N since it takes logoN passes through the net-
work to connect any PE with any other in the worst case. The perfect shuffle
name comes from the property that if a deck of 2N cards, in which N is an inte-
ger, is cut in half and interleaved N times, then the original configuration of the
deck will be restored. All N PEs can simultaneously communicate in 3logoN — 1
passes through the network as presented in (Wu and Feng, 1981).

Finally, the hypercube has N crosspoints for N PEs, with a diameter of log,N-1,
as shown in Figure 10-2h. The smaller number of crosspoints with respect to the
perfect shuffle topology is balanced by a greater connection complexity in the
PEs.

Let us now consider the behavior of blocking in interconnection networks. Fig-
ure 10-4a shows a configuration in which four processors are interconnected

388

CHAPTER 10

ADVANCED TOPICS

® ©

©
@
N
4
@
®

@ Unused
®
S -
® ®
® ®

(b)

® ®
o8 -

Figure 10-4 (a) Crosspoint settings for connections 0 — 3 and 3 - 0; (b) adjusted settings to ac-
commodate connection 1 - 1.

with a two-stage perfect shuffle network in which each crosspoint either passes
both inputs straight through to the outputs, or exchanges the inputs to the out-
puts. A path is enabled from processor O to processor 3, and another path is
enabled from processor 3 to processor 0. Neither processor 1 nor processor 2
needs to communicate, but they participate in some arbitrary connections as a
side effect of the crosspoint settings that are already specified.

Suppose that we want to add another connection, from processor 1 to processor
1. There is no way to adjust the unused crosspoints to accommodate this new
connection because all of the crosspoints are already set, and the needed connec-
tion does not occur as a side effect of the current settings. Thus, connection 1 —
1 is now blocked.

If we are allowed to disturb the settings of the crosspoints that are currently in

CHAPTER 10 ADVANCED TOPICS 389

use, then we can accommodate all three connections, as illustrated in Figure
10-4b. An interconnection network that operates in this manner is referred to as
a rearrangeably nonblocking network.

The three-stage Clos network is strictly nonblocking. That is, there is no need
to disturb the existing settings of the crosspoints in order to add another connec-
tion. An example of a three stage Clos network is shown in Figure 10-5 for four

Middle Stage

Input Stage Output Stage

O
®

® ©

@ @
¢ BN

Figure 10-5 A three-stage Clos network for four PEs.

PEs. In the input stage, each crosspoint is actually a crossbar that can make any
connection of the two inputs to the three outputs. The crosspoints in the middle
stage and the output stage are also small crosshars. The number of inputs to each
input crosspoint and the number of outputs from each output crosspoint is
selected according to the desired complexity of the crosspoints, and the desired
complexity of the middle stage.

The middle stage has three crosspoints in this example, and in general, there are
(n-1)+(p-1)+1 = n+p-1crosspoints in the middle stage, in which n is the
number of inputs to each input crosspoint and p is the number of outputs from
each output crosspoint. This is how the three-stage Clos network maintains a
strictly nonblocking property. There are n — 1 ways that an input can be blocked

390

CHAPTER 10

ADVANCED TOPICS

at the output of an input stage crosspoint as a result of existing connections. Sim-
ilarly, there are p — 1 ways that existing connections can block a desired connec-
tion into an output crosspoint. In order to ensure that every desired connection
can be made between available input and output ports, there must be one more
path available.

For thiscase, n=2andp=2,andsoweneedn+p-1 = 2+2-1 = 3 paths
from every input crosspoint to every output crosspoint. Architecturally, this rela-
tionship is satisfied with three crosspoints in the middle stage that each connect
every input crosspoint to every output crosspoint.

EXAMPLE: STRICTLY NONBLOCKING NETWORK

For this example, we need to design a strictly nonblocking (3-stage Clos) net-
work for 12 channels (12 inputs and 12 outputs to the network) while maintain-
ing a low maximum complexity of any crosspoint in the network.

There are a number of ways that we can organize the network. For the input
stage, we can have two input nodes with 6 inputs per node, or 6 input nodes
with two inputs per node, to list just two possibilities. We have similar choices
for the output stage. Let us start by looking at a configuration that has two
nodes in the input stage, and two nodes in the output stage, with 6 inputs for
each node in the input stage and 6 outputs for each node in the output stage. For
this case, n = p = 6, which means that n + p - 1 = 11 nodes are needed in the mid-
dle stage, as shown in Figure 10-6. The maximum complexity of any node for
this case is 6 x 11 = 66, for each of the input and output nodes.

Now let us try using 6 input nodes and 6 output nodes, with two inputs for each
input node and two outputs for each output node. For this case, n = p = 2, which
means thatn +p - 1 =3 nodes are needed in the middle stage, as shown in Figure
10-7. The maximum node complexity for this case is 6 x 6 = 36 for each of the
middle stage nodes, which is better than the maximum node complexity of 66
for the previous case.

Similarly, networks for n =p =4 and n = p = 3 are shown in Figure 10-8 and Fig-
ure 10-9, respectively. The maximum node complexity for each of these net-
works is 4 x 7 = 28 and 4 x 4 = 16, respectively. Among the four configurations
studied here, n = p = 3 gives the lowest maximum node complexity.s

Input Stage

6x11

6x11

Middle Stage

JJ

[/

5’

0--0
‘--0 t:

‘Q\.
W\

’T

| 22 |
tj

Output Stage

2x2

‘

11x6

11x6

!
//

..

Figure 10-6 A 12-channel three-stage Clos network with n = p = 6.

Input Stage

M

Output Stage

iddle Stage

6x6

6x6

6x6

gl

SOEN

3x2

Figure 10-7 A 12-channel three-stage Clos network withn=p = 2.

MAPPING AN ALGORITHM ONTO A PARALLEL ARCHITECTURE

CHAPTER 10

ADVANCED TOPICS 391

The process of mapping an algorithm onto a parallel architecture begins with a
dependency analysis in which data dependencies among the operations in a
program are identified. Consider the C code shown in Figure 10-10. In an ordi-
nary SISD processor, the four numbered statements require four time steps to

392

CHAPTER 10

ADVANCED TOPICS

Input Stage Middle Stage Output Stage

e
iy

Figure 10-8 A 12-channel three-stage Clos network with n =p = 4.

Input Stage Output Stage

P g Middle Stage P g
— 3x5 4xa4 5x3 (—
_ | 4x4 |
— 3x5 5x3 |—

4x4

— 3x5 5x3 |—
— 4x4 —
—1 3x5 4x4 5x3 |—

Figure 10-9 A 12-channel three-stage Clos network with n =p = 3.

complete, as illustrated in the control sequence of Figure 10-11a. The depen-
dency graph shown in Figure 10-11b exposes the natural parallelism in the con-
trol sequence. The dependency graph is created by assigning each operation in
the original program to a node in the graph, and then drawing a directed arc
from each node that produces a result to the node(s) that needs it.

The control sequence requires four time steps to complete, but the dependency
graph shows that the program can be completed in just three time steps, since
operations 0 and 1 do not depend on each other and can be executed simulta-

CHAPTER 10 ADVANCED TOPICS 393

func(x, y) [/* Conpute (x2 + y2) x y2 */

Operation Pntox, Y
numbers
int tenpO, tenpl, tenp2, tenp3;
0 tempO0 = x * Xx;
1 templ =y * vy;
2 temp2 = tenpl + tenp2;
3 temp3 = tenpl * tenp2;

return(tenp3l);
}

Figure 10-10 A C function computes (x2 + y?) x y2.

Arrows X y
represent
flow of
control

A

y2
Arrows
represent

flow of data

(X2 + y?)xy?

©

(X2 + y2)xy?

@)
Figure 10-11 (a) Control sequence for C program; (b) dependency graph for C program.
neously (as long as there are two processors available.) The resulting speedup of
Tsequentiat _ 4 _ 13
TPurullel 3

may not be very great, but for other programs, the opportunity for speedup can

394

CHAPTER 10

ADVANCED TOPICS

be substantial as we will see.

Consider a matrix multiplication problem Ax = b in which A is a 4x4 matrix and
x and b are both 4x1 matrices, as illustrated in Figure 10-12a. Our goal is to

o0 a1 o2 Aoz || Xo bo
@) a0 A A g || Xq| _ | by
dpp dp1 gy A3 || X2 b,
g0 831 agp Aazz || X3 b3

by =|agoXp|*|ap1X1|*|ap2X2| +|ap3X3

7 11 8 13 9 12 10

by =|ajpXg|*|a11xq [t|a12X2|*+|a13%3

(b)

14 18 15 20 16 19 17

by =|apgXp| *|ap1Xy |t|agpXp| +|ap3xX3

21 25 22 27 23 26 24

b3 =|aggxp|*|az1Xy|*|agaxp| +|a33x3

Figure 10-12 (a) Problem setup for Ax = b; (b) equations for computing the b;.

solve for the bj, using the equations shown in Figure 10-12b. Every operation is
assigned a number, starting from 0 and ending at 27. There are 28 operations,
assuming that no operations can receive more than two operands. A program
running on a SISD processor that computes the b; requires 28 time steps to com-
plete, if we make a simplifying assumption that additions and multiplications
take the same amount of time.

A dependency graph for this problem is shown in Figure 10-13. The worst case
path from any input to any output traverses three nodes, and so the entire pro-
cess can be completed in three time steps, resulting in a speedup of

TSeguentiul - 2_8 - 93
TPurallel 3

Now that we know the structure of the data dependencies, we can plan a map-
ping of the nodes of the dependency graph to PEs in a parallel processor. Figure

CHAPTER 10 ADVANCED TOPICS 395

Figure 10-13 Dependency graph for matrix multiplication.

10-14a shows a mapping in which each node of the dependency graph for by is
Course Grain: PT =430 ns

100ns 100ns 100ns 100ns

Fine Grain: PT = 2120 ns
100ns 100ns 100ns 100ns

@ @ @HProcessor
— Process
[000Ons 1000ns 1000ns / 1000ns

10ns @ 10ns

1000ns

+ = 10ns
(b)

* 100 ns
Communication = 1000 ns

1000ns

(a)
Figure 10-14 Mapping tasks to PEs: (a) one PE per operation; (b) one PE per b;.

assigned to a unique PE. The time required to complete each addition is 10 ns,

396

CHAPTER 10

ADVANCED TOPICS

the time to complete each multiplication is 100 ns, and the time to communi-
cate between PEs is 1000 ns. These numbers are for a fictitious processor, but are
not far off in relative magnitude from real numbers.

As we can see from the parallel time of 2120 ns to execute the program using the
mapping shown in Figure 10-14a, the time spent in communication dominates
performance. This is worse than a SISD approach, since the 16 multiplications
and the 12 additions would require 16 x 100 ns + 12 x 10 ns = 1720 ns. There is
no communication cost within a SISD processor, and so only the computation
time is considered.

An alternative mapping is shown in Figure 10-14b in which all of the operations
needed to compute by are clustered onto the same PE. We have thus increased
the granularity of the computation, which is a measure of the number of opera-
tions assigned to each PE. A single PE is a sequential, SISD processor, and so
none of the operations within a cluster can be executed in parallel, but the com-
munication time among the operations is reduced to 0. As shown in the diagram,
the parallel time for by is now 430 ns which is much better than either the previ-
ous parallel mapping or a straight SISD mapping. Since there are no dependen-
cies among the b, they can all be computed in parallel, using one processor per
bj. The actual speedup is now:
TSequentiul 1720 _

= =4
TParullel 430

Communication is always a bottleneck in parallel processing, and so it is impor-
tant that we maintain a proper balance. We should not be led astray into think-
ing that adding processors to a problem will speed it up, when in fact, adding
processors can increase execution time as a result of communication time. In
general, we want to maintain a ratio in which:

T L
Communication <1

TComputation

FINE-GRAIN PARALLELISM — THE CONNECTION MACHINE CM-1

The Connection Machine (CM-1) is a massively parallel SIMD processor
designed and built by Thinking Machines Corporation during the 1980%. The
architecture is noted for high connectivity between a large number of small pro-
cessors. The CM-1 consists of a large number of one-bit processors arranged at
the vertices of an n-space hypercube. Each processor communicates with other

CHAPTER 10 ADVANCED TOPICS 397

processors via routers that send and receive messages along each dimension of the
hypercube.

A block diagram of the CM-1 is shown in Figure 10-15. The host computer is a

Memory bus [D [D [D [D

Host - [D 65536 cells [D
L1 x 4096 bitg/cells

I:D 32M: bytes mtemory |
e o D00

: Connection Machine

/1O —»
500 M bits/sec

Figure 10-15 Block diagram of the CM-1 (Adapted from [Hillis, 1985]).

conventional SISD machine such as a Symbolics computer (which was popular
at the time) that runs a program written in a high level language such as LISP or
C. Parallelizeable parts of a high level program are farmed out to 2" processors
(216 processors is the size of a full CM-1) via a memory bus (for data) and a
microcontroller (for instructions) and the results are collected via the memory
bus. A separate high bandwidth datapath is provided for input and output
directly to and from the hypercube.

The CM-1 makes use of a 12-space hypercube between the routers that send and
receive data packets. The overall CM-1 prototype uses a 16-space hypercube, and
so the difference between the 12-space router hypercube and the 16-space PE
hypercube is made up by a crossbar that serves the 16 PEs attached to each
router. For the purpose of example, a four-space hypercube is shown in Figure
10-16 for the router network. Each vertex of the hypercube is a router with an
attached group of 16 PEs, each of which has a unique binary address. The router
hypercube shown in Figure 10-16 thus serves 256 PEs. Routers that are directly
connected to other routers can be found by inverting any one of the four most

398 CHAPTER 10 ADVANCED TOPICS

Router Address (The router

address forms the four most
significant bits of each of thel6
PEs that the router serves.)

0100 0101 1100 1101

0000 0001 1000 1001

0110 0111 1110 1111

0010 0011 1010 1011

Figure 10-16 A four-space hypercube for the router network.

significant bits in the address.

Each PE is made up of a 16-bit flag register, a three-input, two-output ALU, and
a 4096-bit random access memory, as shown in Figure 10-17. During operation,

. [Bue |
4K Memory > -
ALU|
12~T Aklz 1
A address B address - 16
— Truth tabl
L [Fregs] [T]]])= T
4 4 ‘
. To Hypercube
Read Writ
flag | | flag =3
=
- Router EE
=
=
==

Figure 10-17 Block diagram of a CM-1 processing element

an external controller (the microcontroller of Figure 10-15) selects two bits from
memory via the A address and B address lines. Only one value can be read from
memory at a time, so the A value is buffered while the B value is fetched. The
controller selects a flag to read, and feeds the flag and the A and B values into an

CHAPTER 10 ADVANCED TOPICS 399

ALU whose function it also selects. The result of the computation produces a
new value for the A addressed location and one of the flags.

The ALU takes three one-bit data inputs, two from the memory and one from
the flag register, and 16 control inputs from the microcontroller and produces
two one-bit data outputs for the memory and flag registers. The ALU generates
all 23 = 8 combinations (minterms) of the input variables for each of the two
outputs. Eight of the 16 control lines select the minterms that are needed in the
sum-of-products form of each output.

PE’s communicate with other PE’s through routers. Each router services commu-
nication between a PE and the network by receiving packets from the network
intended for the attached PEs, injecting packets into the network, buffering
when necessary, and forwarding messages that use the router as an intermediary
to get to their destinations.

The CM-1 is a landmark machine for the massive parallelism made available by
the architecture. For scalable problems like finite element analysis (such as
modeling heat flow through the use of partial differential equations), the avail-
able parallelism can be fully exploited. There is usually a need for floating point
manipulation for this case, and so floating point processors augment the PEs in
the next generation CM-2. A natural way to model heat flow is through a mesh
interconnect, which is implemented as a hardwired bypass to the message-pass-
ing routing mechanism through the North-East-West-South (NEWS) grid. Thus
we can reduce the cost of PE-to-PE communication for this application.

Not all problems scale so well, and there is a general trend moving away from
fine grain parallel processing. This is largely due to the difficulty of keeping the
PEs busy doing useful work, while also keeping the time spent in computation
greater than the time spent in communication. In the next section, we look at a
coarse grain architecture: The CM-5.

COURSE-GRAIN PARALLELISM: THE CM-5

The CM-5 (Thinking Machines Corporation) combines properties of both
SIMD and MIMD architectures, and thereby provides greater flexibility for
mapping a parallel algorithm onto the architecture. The CM-5 is illustrated in
Figure 10-18. There are three types of processors for data processing, control,
and 1/O. These processors are connected primarily by the Data Network and the
Control Network, and to a lesser extent by the Diagnostic Network.

400 CHAPTER 10 ADVANCED TOPICS

Diagnostic Network

A

Data Network)
[
| Network
— Interfaces
n N
NI < 9
N =
—l =
m -
Y m)
| " .
Processing Nodes o N

Control Processors @
Data \
Processor 1/O

Control Control /O Interfaces

Figure 10-18 The CM-5 architecture.

The processing nodes are assigned to control processors, which form partitions,
as illustrated in Figure 10-19. A partition contains a control processor, a number

1
Data Network

7 N 7 N 7 WY W U S—
Y Y Y Y Y Y Y Y Y
cP| | PN cP I'jg cP||pn||PN||PN||PN
A A A A A A A A A
Y Y Y Y Y Y Y Y Y

Control Network
[

Figure 10-19 Partitions on the CM-5.

of processing nodes, and dedicated portions of the Control and Data Networks.
Note that there are both user partitions (where the data processing takes place)
and 1/O partitions.

The Data Network uses a fat-tree topology, as illustrated in Figure 10-20. The
general idea is that the bandwidth from child nodes to parent nodes increases as

CHAPTER 10 ADVANCED TOPICS 401

f%%%k\\§

K/M\% K/M\%
/N I\ I\ 2\
50 O 0 OO O D

Figure 10-20 An example of a fat tree.

the network approaches the root, to account for the increased traffic as data trav-
els from the leaves toward the root.

The Control Network uses a simple binary tree topology in which the system
components are at the leaves. A control processor occupies one leaf in a partition,
and the processing nodes are placed in the remaining nodes, although not neces-
sarily filling all possible node positions in a subtree.

The Diagnostic Network is a separate binary tree in which one or more diagnos-
tic processors are at the root. At the leaves are physical components, such as cir-
cuit boards and backplanes, rather than logical components such as processing
nodes.

Each control processor is a self-contained system that is comparable in complex-
ity to a workstation. A control processor contains a RISC microprocessor that
serves as a CPU, a local memory, 1/0O that contains disks and Ethernet connec-
tions, and a CM-5 interface.

Each processing node is much smaller, and contains a SPARC-based micropro-
cessor, a memory controller for 8, 16, or 32 Mbytes of local memory, and a net-
work interface to the Control and Data Networks. In a full implementation of a
CM-5, there can be up to 16,384 processing nodes, each performing 64-bit
floating point and integer operations, operating at a clock rate of 32 MHz.

Overall, the CM-5 provides a true mix of SIMD and MIMD styles of processing,
and offers greater applicability than the stricter SIMD style of the CM-1 and

402

CHAPTER 10

ADVANCED TOPICS

CM-2 predecessors.

Home video game systems are good examples of (nearly) full-featured computer
architectures. They have all of the basic features of modern computer architec-
tures, and several advanced features. One notably lacking feature is permanent
storage (like a hard disk) for saving information, although newer models even
have that to a degree. One notable advanced feature, which we explore here, is
the use of multiple processors in a MIMD configuration.

Three of the most prominent home video game platforms are manufactured by
Sony, Nintendo, and Sega. For the purpose of this discussion, we will study the
Sega Genesis, which exploits parallel processing for real-time performance.

THE SEGA GENESIS ARCHITECTURE
Figure 10-21 illustrates the external view of the Sega Genesis home video game

* Genesis

Figure 10-21 External view of the Sega Genesis home video game system.

system. The Sega Genesis consists of the motherboard, which contains all of the
electronic components such as the processor, memory, and interconnects, and
also a few hand-held controllers and an interface to a television set.

In terms of the conventional von Neumann model of a digital computer, the
Sega Genesis has all of the basic parts: input (the controllers), output (the televi-
sion set), arithmetic logic unit (inside of the processor), control unit (also inside
of the processor), and memory (which includes the internal memory and the
plug-in game cartridges).

CHAPTER 10 ADVANCED TOPICS 403

The system bus model captures the logical connectivity of the Sega architecture
as well as some of the physical organization. Figure 10-22 illustrates the system

68000 Z80 Main Plug-in
Processor Processor Memory Cartridge
SYSTEM BUS
Programmable Sound Video and Interface to
Sound Synthesis Sound Output Hand-Held
Generator Chip DACs Controller

Figure 10-22 System bus model view of the Sega Genesis.

bus model view of the Sega Genesis. The Genesis contains two general-purpose
microprocessors, the Motorola 68000 and the Zilog Z80. These processors are
older, low cost processors that handle the general program execution. Video
game systems must be able to generate a wide variety of sound effects, a process
that is computationally intensive. In order to maintain game speed and quality
during sound generation the Genesis off-loads sound effect computations to two
special purpose chips, the Texas Instruments programmable sound generator (T
PSG) and the Yamaha sound synthesis chip. There are also 1/O interfaces for the
video system and the hand-held controls.

The 68000 processor runs the main program and controls the rest of the
machine. The 68000 accomplishes this by transferring data and instructions to
the other components via the system bus. One of the components that the
68000 processor controls is the architecturally similar, but smaller Z80 processor,
which can be loaded with a program that executes while the 68000 returns to
execute its own program, using an arbitration mechanism that allows both pro-
cessors to share the bus (but only one at a time.)

The TI PSG has 3 square wave tones and 1 white noise tone. Each tone/noise
can have its own frequency and volume.

The Yamaha synthesis chip is based on FM synthesis. There are 6 voices with 4
operators each. The chip is similar to those used in the Yamaha DX27 and

404

CHAPTER 10

ADVANCED TOPICS

DX100 synthesizers. By setting up registers within the chips, a rich variety of
sounds can be created.

The plug-in game cartridges contain the programs, and there is additional runt-
ime memory available in a separate unit (labeled “Main memory” in Figure
10-22.) Additional components are provided for video output, sound output,
and hand-held controllers.

SEGA GENESIS OPERATION

When the Sega Genesis is initially powered on, a RESET signal is enabled, which
allows all of the electrical voltage levels to stabilize and initializes a number of
runtime variables. The RESET signal is then automatically disabled, and the
68000 begins reading and executing instructions from the game cartridge.

During operation, the instructions in the game cartridge instruct the 68000 to
load a program into the Z80 processor, and to start the Z80 program execution
while the 68000 returns to its own program. The Z80 program controls the
sound chips, while the 68000 carries out graphical operations, probes the
hand-held controllers for activity, and runs the overall game program.

SEGA GENESIS PROGRAMMING

[Note from Authors: This section is adapted from a contribution by David Ash-
ley, dash@xdr.com.]

The Sega Genesis is a home video game system that uses plug-in cartridges to
store the game software. Blank cartridges can be purchased from third party ven-
dors, which can then be programmed using an inexpensive PROM burner card
that be plugged into the card cage of a desktop computer. Games can be written
in high level languages and compiled into assembly language, or more com-
monly, programmed in assembly langauge directly (even today, assembly lan-
guage is still heavily used for game programming). A suite of development tools
translates the source code into object code that can then be burned directly into
the cartridges (once per cartridge.) As an alternative to burning cartridges during
development, the cartridge can be replaced with a reprogrammable development
card.

The Genesis contains two general-purpose microprocessors, the Motorola 68000

CHAPTER 10 ADVANCED TOPICS 405

and the Zilog Z80. The 68000 runs at 8 MHz and has 64 KB of memory
devoted to it. The ROM cartridge appears at memory location 0. The 68000
off-loads sound effect computations to two special purpose chips, the Texas
Instruments programmable sound generator (T1 PSG) and the Yamaha sound
synthesis chip.

The Genesis graphics hardware consists of 2 scrollable planes. Each plane is made
up of tiles. Each tile is an 8x8 pixel square with 4 bits per pixel. Each pixel can
thus have 16 colors. Each tile can use 1 of 4 color tables, so on the screen there
can be 64 colors at once, but only 16 different colors can be in any specific tile.
Tiles require 32 bytes. There are 64 KB of graphics memory, which allows for
2048 unique tiles if memory is used for nothing else.

Each plane can be scrolled independently in various ways. Planes consist of tables
of words, in which each word describes a tile. A word contains 11 bits for identi-
fying the tile, 2 bits for “flip x” and “flip y,” 2 bits for the selection of the color
table, and 1 bit for a depth selector. Sprites are also composed of tiles. A sprite
can be up to 4 tiles wide by four tiles high. Since the size of each tile is 8x8, this
means sprites can be anywhere from 8x8 pixels to 32x32 pixels in size. There can
be 80 sprites on the screen at one time. On a single scan line there can be 10
32-pixel wide sprites or 20 16-pixel wide sprites. Each sprite can only have 16
colors taken from the 4 different color tables. Colors are allocated 3 bits for each
gun, and so 512 colors are possible. (Color O=transparent.)

There is a memory copier program that is resident in hardware that performs fast
copies from the 68000 RAM into the graphics RAM. The Z80 also has 8KB of
RAM. The Z80 can access the graphics chip or the sound chips, but usually these
chips are controlled by the 68000.

The process of creating a game cartridge involves (1) writing the game program,
(2) translating the program into object code (compiling, assembling, and linking
the code into an executable object module; some parts of the program may be
written in a high level language, and other parts, directly in assembly language),
(3) testing the program on a reprogrammable development card (if a reprogram-
mable development card is available), and (4) burning the program into a blank
game cartridge.

See Further Reading below for more information on programming the Sega
Genesis.

406

CHAPTER 10

ADVANCED TOPICS

In the early days of computing, computers were centralized facilities that con-
tained most or all of the resources used by the populations they serviced. Data
was transferred between computers via media (punched paper cards, paper tapes,
magnetic tapes, and magnetic disks), hand-carried by an operator.

As the number of computers increased, and costs shifted away from hardware
and more toward labor, it became economical to directly link computers so that
resources could be shared. This is what networking is about. We briefly explored
local area networks in Chapter 8, in the context of the traditional 7-layer ISO
model. Here, we take a deeper look at architectural aspects of computer networks
in the context of the Internet model.

THE INTERNET MODEL

In a telecommunication system there may be many sources and many destina-
tions. An example of this form of communication is a long distance telephone
network. For every telephone to be reachable from every other telephone, there
must be a path, or channel, between each source and destination. If there are 107
telephones in New York City and 10 telephones in Chicago, then for everyone
in one city to be able to call everyone in the other city, 107 x 107 = 104 channels
must exist between the cities. Fortunately, not everyone in New York City wants
to talk with everyone in Chicago at the same time, and a smaller number of
channels between New York City and Chicago can be shared among all tele-
phones in those cities. On the other hand, there must be at least one line from
each telephone to the telephone company’s central office, and there must be suf-
ficient lines between central offices to handle the maximum number of simulta-
neously held conversations.

A small number of physical connections, on the order of a few to a few thousand
depending on whether fibers or wires are used, are all that are needed to connect
the cities because it is never the case that everyone in one city wants to call some-
one in the other city at the same time. The information carrying capacity of the
connections (called bandwidth) is shared among all of the users so that a dra-
matic reduction in cost is realized. A control mechanism must be created, how-
ever, so that the bandwidth can be shared properly.

Layering in the TCP/IP Protocol Suite

An “internet” is a collection of interconnected networks. The “Internet” is prob-

CHAPTER 10 ADVANCED TOPICS 407

ably the most well-known internet, using the TCP/IP protocol and IP addresses
in what is known as the TCP/IP protocol suite (more on this below). The 7-layer
OSI model has been simplified somewhat in the Internet, which can be thought
of as having only 4 layers, as illustrated by the protocol stack shown in Figure
10-23. At the bottom of the protocol stack is the Link layer, which is made up of

Application

Transport

Network

MAC
PHY

Link

Figure 10-23 Internet protocol stack.

the medium access control (MAC) and physical (PHY) sublayers. The Link layer
resolves contention for the medium when more than one device wants to trans-
mit, manages the logical grouping of bits into frames, and implements error pro-
tection.

The Link layer is responsible for simply getting a frame of bits from one machine
to a directly connected machine. This is fine for point-to-point communication
between two cooperating processes on different machines. In order for multiple
processes to share the same link, however, a protocol is needed to coordinate
which data goes to what process. This is the responsibility of the Network layer,
which is implemented with the Internet Protocol (IP) for the Internet.

The network layer deals with hop-by-hop communication. The Transport layer
deals with end-to-end communication, in which there may be a number of inter-
vening systems between the sender and receiver. The Transport layer deals with
retransmission (for errors, or packets dropped due to congestion), sequencing
(packets may arrive out-of-order, flow control (applying back-pressure to the
source to relieve congestion) and error protection (the Link layer does not do
enough error protection on its own.) For the Internet, the Transport layer is
implemented with the Transmission Control Protocol (TCP). The TCP/IP com-
bination at the Network and Transport layers is what defines the Internet. Any
other protocols can be used at the Link and Application layers.

408

CHAPTER 10

ADVANCED TOPICS

At the Application layer, a process can exchange data with another process any-
where on the Internet and treat the connection as if it is a file on the local system,
reading and writing bytes with ordinary read and write system calls, frequently
implemented by sockets, which are pathways to the network through the operat-
ing system.

Internet Addresses

Every interface on the Internet has a unique IP address. Version 4 of the IP pro-
tocol, known as IPv4, is still widely used but is gradually being replaced by IPv6
which uses addresses that are four times larger, and has several enhancements and
simplifications to IPv4. An example of an IPv4 address, shown in “dotted deci-
mal notation” is shown below:

165. 230. 140. 67
Each number that is delimited by a dot is an unsigned byte in the range from 0

through 255. The equivalent bit pattern for the IPv4 address shown above is
then:

10100101.11100110. 10001100. 10000011

The leftmost bits determine the class of the address. Figure 10-24 shows the five

7 bits 24 bits

Class A |O| netid I host id |

14 bits 16 bits

Class B |1|0| netid I host id |

21 bits 8 bits

Class C |l|1|0| netid I host id |

28 bits

Class D |1|l|1|0| multicast group id |

27 bits

Class E |l|l| 1|1|0| reserved for future use |

Figure 10-24 Five classes of IPv4 addresses.

IPv4 classes. Class A has 7 bits for the network identification (ID) and 24 bits for
the host ID. There can thus be at most 27 class A networks and 224 hosts on each
class A network. A number of these addresses are reserved, and so the number of

CHAPTER 10 ADVANCED TOPICS 409

addresses that can be assigned to hosts is fewer than the number of possible
addresses.

Class B addresses use 14 bits for the network ID and 16 bits for the host ID.
Class C addresses use 21 bits for the network ID and 8 bits for the host ID. Class
D addresses are used for multicast groups, to which an end-system that has a
class A, B, or C address subscribes, and thereby receives all network traffic
intended for that group. This is an efficient mechanism for sending the same
packets to multiple subscribers, without flooding the network with broadcasts,
and without the sender needing to keep track of all of the current subscribers.

410

CHAPTER 10

ADVANCED TOPICS

| User data | Application layer
|TCP header| User data | Transport layer
| IP header |TCP header| User data | Network layer
Ethernet | IP header |TCP header| User data | Ethernet | Link layer

header trailer

Figure 10-25 Encapsulation in the TCP/IP protocol suite.

adds a TCP header that identifies the source and destination ports, forming a
TCP segment. The TCP segment is passed down to the network layer, where the
TCP segment is repackaged into IP datagrams, each with an IP header identify-
ing the source and destination systems. The IP datagrams are sent to the Link
layer, where the datagrams are encapsulated into Ethernet frames (for this exam-
ple). The reverse process takes place on the receiving system.

A single TCP segment may be decomposed into a number of IP datagrams, that
are independently routed through the Internet. Each IP datagram contains the
source and destination IP addresses (in the IP header), the source and destination
ports (in the TCP header), and the protocol (in the IP header — TCP is only one
of the transport layer protocols used in the Internet.) Collectively, these five
parameters uniquely identify each IP datagram as it traverses the Internet, which
helps ensure that the datagrams arrive at the correct receiving process.

The Domain Name System

The Domain Name Systems (DNS) is a distributed database that maps between
hostnames and IP addresses, and provides mail routing information. For exam-
ple, cereal.rutgers.edu maps to 165.230.140.67 (and vice versa), and all three
names: internet.rutgers.edu, www.internet.rutgers.edu, and mulder.rutgers.edu
map to 165.230.44.67. The DNS is responsible for interacting with programs
that need to map between names and addresses.

Each domain (like rutgers.edu) maintains its own database of information, and
runs a server that other systems across the Internet can query. Access to the DNS
is provided through a resolver which is embodied in library routines that are
silently linked into high-level programs that access the network.

CHAPTER 10 ADVANCED TOPICS 411

The Network Information Center (NIC, also known as the InterNIC) manages
the top-level domains, and delegates authority for second level domains. Within
a zone, a local administrator maintains the name server database. There must be
a primary name server, which loads its database from a file, and secondary name
servers, which get their information from the primary name server. Caching is
used, so that a query that causes other servers to be contacted does not cause
future queries to cause additional contacts to other servers.

The World Wide Web

The World Wide Web (or simply, the “Web”) is made up of client processes
(Web browsers) and Web servers running the HyperText Transport Protocol
(HTTP), at the Application layer of the Internet. As distinctions get blurred in
everyday usage, it is important to keep in mind that the Web is built on top of
the Internet — the Web is not the Internet itself.

In 1989, Tim Berners-Lee at CERN (the European high-energy physics facility)
developed a text based Web, for exchanging technical documents among col-
leagues. In February 1993, the National Center for Supercomputing Applica-
tions (NCSA) at the University of Illinois at Urbana-Champaign released a
graphical version of the Mosaic Web browser, as well as an HTTP server, both
free of charge, and the Web exploded to where it is today.

TRANSMISSION MEDIA

In a geographically close environment, computers can be networked with private
cables in a number of configurations, such as the bus, star, ring, and mesh config-
urations, as shown in Figure 10-2. For geographically distant systems, the public
switched telephone network (PSTN) can be used, which takes the form of an
incomplete mesh.

Users connect to the PSTN with modems (see Chapter 8) that convert logical
bits into audible sounds. People can hear at frequencies up to about 20 KHz, but
only speak at frequencies of about 4 KHz, which is approximately the bandwidth
that traditional telephony will pass on a voice-grade line. An analog signal (such
as voice) that is approximated with a digital signal needs to be sampled at least
twice per cycle (to capture the high and low values), and so a sampling rate of 8
KHz is needed to digitize a voice-grade line. At 8 bits per sample, that gives a bit
rate of 8 bits/cycle x 8 KHz = 64 Kbits/sec which is what is available on an ordi-
nary phone line. One sample out of every 8 is used by the telephone company to

412

CHAPTER 10

ADVANCED TOPICS

administer the line, and so the maximum bit rate possible on a voice-grade line is
56 Kbits/sec.

A transmitted binary sequence is converted into high/low values, but the wave-
form gets attenuated and distorted, more so at high frequencies and long dis-
tances. Figure 10-26 illustrates the sampling problem. The binary pattern

0 1 0 1 1 0 0 1
Ideal wave

AW G

Transmitted wave
eI eI JrJrr e I
\

Sampling instants (at receiver)

Figure 10-26 Ideal vs. transmitted waves.

01011001 is represented by an ideal wave, which is only approximated by a
transmitted wave. The ideal wave contains discontinuities, which are difficult to
produce with a real wave. In terms of analysis, we can think of the ideal wave as
being approximated with a superposition of sinusoidal waves, with sharper edges
achieved at higher frequencies.

Unfortunately, high frequencies are attenuated more greatly than low frequencies
in most media, and different frequencies propagate at different rates, which leads
to distortions of the wave as it propagates. The degree of distortion varies with
the transmission medium, several of which are described here.

Two-Wire Open Lines

In one of the simplest scenarios, a pair of wires, open to free space, carries a signal
and a return (the “ground”). The two-wire open line configuration is shown in
Figure 10-27a. The lines emit electromagnetic radiation, and they also pick up
noise, not necessarily the same amount of noise for each line, which distorts the
difference signal. The lines are also vulnerable to “capacitive coupling” which
means they pick up unwanted signals from neighboring wires. The speed and
distance for reliable transmission is limited to about 19.2 Kbps and 50 m.

CHAPTER 10 ADVANCED TOPICS 413

Signal

(@) GND

P

© SO OHXOXKTX

) GND Optical pjastic coating
Signal ¢ core ¢

'

(©] @ g3
3
\ / Optical cladding
Insulation
N3 &)
L (o)

K AR

Figure 10-27 Transmisson media. (a) Two-wire open lines; (b) twisted-pair lines; (c) coaxial cable;
(d) optical fiber; (e)satellites.

Twisted-Pair Lines

If we twist the pair of lines in the two-wire open line configuration, then any
spurious external noise that is introduced to the line affects both the signal and
ground (reference) wires in the same way. Figure 10-27b shows the twisted-wire
configuration. The difference signal is thus unaffected, and we can transmit up to
1 Mbps over 100 m.

Coaxial Cable

For higher speeds (10 Mbps) and longer distances (hundreds of meters), the sig-
nal wire is placed inside of the reference conductor (coaxially) with an insulator
between the two, as shown in Figure 10-27¢. The braiding of the outer conduc-
tor makes the cable more flexible. The idea is that the center conductor is effec-

414

CHAPTER 10

ADVANCED TOPICS

tively shielded from external interference, and is also shielded from losses from
electromagnetic radiation.

Optical Fiber

Optical communication is immune to electromagnetic interference and
crosstalk, and supports a much wider bandwidth. There is a need for optoelec-
tronic conversions on each end, which is commercially available up to a few
Ghps (using laser diodes.) Optical fiber consists of the optical core, optical clad-
ding, and a plastic coating as shown in Figure 10-27d.

A light emitting diode (LED) is less expensive light source than a laser diode, but
it emits light at various angles, and so a multimode stepped index fiber is used
that reflects light less than the critical angle back into the core. Because the path
lengths differ, the received pulse is wider, and only modest bit rates can be sup-
ported. The LEDs are inexpensive, however, and bending tolerances are a less sig-
nificant issue than for laser diodes.

With a multimode graded index fiber, light is refracted more greatly as it moves
away from the core, which narrows thw pulse and reduces losses.

Single mode (monomode) fiber reduces the core diameter to a single wavelength
so that light travels along a single dispersionless path. Laser diodes are commonly
used as sources for single mode fiber, and can operate up to several Gbps over
tens of kilometers.

Satellites

Manmade satellites that are launched into orbit around the Earth are used for
communication when a broad area of coverage is needed at a lower cost than a
wireline network (including optical fibers). Natural satellites, inside and outside
of Earth orbits (such as the Moon and asteroids), can also be used for communi-
cation, but are not generally in use for such purposes.

In satellite communication, a collimated microwave beam is transmitted from
the ground to a satellite, where a transponder that covers a certain band of fre-
guencies retransmits the signal to an area of coverage on the Earth. The satellite
configuration is shown in Figure 10-27e.

CHAPTER 10 ADVANCED TOPICS 415

A typical satellite has several transponders at 500 MHz per channel. A small area
of coverage means that the transmitted signal is stronger and the receiving dishes
can be smaller. This is typical for direct broadcast satellite (DBS) television, in
which very small receiving dishes are used. The DBS satellites orbit the Earth at a
low orbit, approximately 700 Km, and so a smaller collecting area is needed than
for satellites that are placed in geosynchronous orbit (23,000 miles above the sur-
face of the Earth), where the Earth’s attractive gravitational force and the repel-
ling centrifugal force are balanced, so that the satellite appears stationary over the
ground when the orbit colocates with the Equater. This is why large satellite
dishes are aimed in the direction of the Equater.

For two-way satellite network communication, the delay between the end-user
and the satellite needs to be tolerable. The uplink to the satellite is generally
slower than the downlink. This matches the typical mode of operation for an
end-user on the Internet, since less than 10% of the network traffic goes from the
end-user to the Internet, and over 90% of the network traffic goes from the
Internet to the end-user. The speed of communication is limited by ¢ (the speed
of light in a vacuum) which is approximately 1 ns per foot, or 5 ps per mile
(5280 feet per mile). Over a distance of 23,000 miles, the free space delay is
more than 100 ms to the satellite and another 100 ms back to the Earth, plus a
processing delay. This is more than the acceptable average delay of 100 ms for a
keystroke response. Low Earth orbit (LEO) is only at 700 Km, and introduces a
much smaller delay, on the order of spanning the distance of a few states in the
United States, and is therefore better suited for interactive networking.

Terrestrial Microwave

Ground based line-of-sight links are effective up to 50 Km, particularly for cross-
ing difficult terrain, although they are prone to atmospheric disturbances, flocks
of geese, etc.

Radio

In cellular radio communication, a radio base station is placed in the middle of
cell, which is generally less than 20 Km in diameter. A restricted band of fre-
guencies is used within a cell, for communication between roaming cellular
devices and the base station. Neighboring cells use a different band of frequen-
cies, so that there is no confusion at the cell boundary when a handoff is made as
a roaming end-user transits from one cell to another, which normally involves a
frequency change.

416

CHAPTER 10

ADVANCED TOPICS

Total available bandwidth in a cell is small, on the order of 2 MB/s, which is sub-
divided over the number of channels in use. In congested areas, cell sizes are
smaller than in less densely populated areas, sometimes extending no farther than
a single building.

BRIDGES AND ROUTERS REVISITED, AND SWITCHES

A hub is a central connection point for end systems. A hub is also known as a
bridge when an end system is another hub. A hub simply copies packets from
one network interface to all of the others, as illustrated in the configuration
shown in Figure 10-28a. Hubs and bridges have modest intelligence these days,

@)

o O

YYY vy
© [JCJ0T | swen | [JCIL]

Figure 10-28 Configurations shown for (a) a hub; (b) a router; and (c) a switch.

by isolating collisions on single network links (that is, if two packets collide on a
span of the network, which is a normal but unwanted condition, the collision
signal is not propagated to the other network links), and by limiting certain types
of traffic from being sent to all other interfaces.

A router connects one network to another (see Figure 10-28b), and makes deci-
sions with respect to forwarding packets across its boundaries. A router by defini-
tion has more than one network interface and forwards packets between

CHAPTER 10 ADVANCED TOPICS 417

interfaces. The network protocols used on either side of a router can differ.

A router forwards packets based on the protocol, whereas a switch forwards
packets based only on the destination address. A switch is a high speed hub with
no shared bandwidth, as illustrated in Figure 10-28c. A switch eliminates media
access conflicts because there is no contention for the media.

We see an example of a switch in the 3-stage Clos network discussed in Section
10.1.2. This type of network requires an external controller that sets up the
source-to-destination paths. An enhancement is a self-routing network, that sets
up source-to-destination connections on-the-fly, based on the destination
addresses in the headers of packets traversing the network.

As an example, consider designing a 4-input, 4-output self-routing switch. We
can accomplish this using the bubblesort algorithm, in which packets with the
smallest addresses are bubbled to the top, by making pairwise exchanges starting
from the top and working toward the bottom, dropping the packet with the larg-
est address to the bottom on each pass. For n channels, there are n(n-1)/2 com-
parisons that need to be made. For this case, n=4, and so 4(4-1)/2 = 6
comparisons need to be made, which means that the switch needs 6 crosspoints.

The 4x4 self-routing switch is shown in Figure 10-29.

s - ©
O+ Y ’ ’ ’ ©
®) ®

Figure 10-29 A 4x4 self-routing switch based on the bubblesort algorithm.

m SUMMARY

418

CHAPTER 10

ADVANCED TOPICS

B FURTHER READING

(Quinn, 1987) and (Hwang, 1993) overview the field of parallel processing in
terms of architectures and algorithms. (Flynn, 1972) covers the Flynn taxonomy
of architectures. (Gerasoulis and Yang, 1991) argue for maintaining a ratio of
communication time to computation time of less than 1. (Hillis, 1985) and (Hil-
lis, 1993) describe the architectures of the CM-1 and CM-5, respectively. (Hui,
1990) covers interconnection networks, and (Leighton, 1992) covers routing
algorithms for a few types of interconnection networks. (Wu and Feng, 1981)
covers routing on a shuffle-exchange network. (Halsall, 1996) gives a thorough
and readable treatment of network media types.

Additional information can be found on programming the Sega Genesis at
http://hiwaay.net/~jfrohwei/sega/genesis.html.

Flynn, M. J., “Some Computer Organizations and Their Effectiveness,” IEEE
Transactions on Computers, vol. 30, no. 7, pp. 948-960, (1972).

Yang, T. and A. Gerasoulis, “A Fast Static Scheduling Algorithm for DAGS on an
Unbounded Number of Processors,” Proceedings of Supercomputing 91, Albu-
querque, New Mexico, (Nov. 1991).

Halsall, F, Data Communications, Computer Networks, and Open Systems,

CHAPTER 10 ADVANCED TOPICS 419

4/e, Addison-Wesley, (1996).

Hillis, W. D., The Connection Machine, The MIT Press, (1985).

Hillis, W. D. and L. W. Tucker, “The CM-5 Connection Machine: A Scalable
Supercomputer,” Communications of the ACM, vol. 36, no. 11, pp. 31-40, (Nov.,
1993).

Hui, J. Y., Switching and Traffic Theory for Integrated Broadband Networks, Klu-
wer Academic Publishers, (1990).

Hwang, K., Advanced Computer Architecture: Parallelism, Scalability, Programma-
bility, McGraw-Hill, (1993).

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann, (1992).

Quinn, M. ., Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill, (1987).

Stone, H. S. and J. Cocke, “Computer Architecture in the 1990s,” IEEE Com-
puter, vol. 24, no. 9, pp. 30-38, (Sept., 1991).

Wu, C.-L. and T.-Y. Feng, “The Universality of the Shuffle-Exchange Network,”
IEEE Transactions on Computers, vol. C-30, no. 5, pp. 324-, (1981).

B PROBLEMS

Create a dependency graph for the following expression:
f(x,y) = X2 + 2xy + y2.

Given 100 processors for a computation with 5% of the code that cannot
be parallelized, compute speedup and efficiency.

What is the diameter of a 16-space hypercube?

For the EXAMPLE in Section 10.1.2, compute the total crosspoint com-
plexity over all three stages.

420 CHAPTER 10 ADVANCED TOPICS

To which IPv4 class does address 165. 230. 140. 67 belong?

How many networks (not hosts) can the IPv4 class A, B, and C addresses
support? That is, how many distinct class A, B, and C network addresses can
there be? Do not consider reserved addresses.

Network media always carries data in bit-serial fashion, and never in par-
allel. That is not to say that data could not be carried over a network in
byte-parallel or word-parallel fashion; there simply is no advantage to doing it
this way. To see why this is the case, calculate the time required to transmit a
32-bit word between two computers over a 32-foot network. The network
speed is 1 Gbps per channel. The delay imposed by the distance is 1 ns per
foot. Calculate the time to transmit the 32-bit word using a single channel
(bit-serial fashion) and using 32 channels (word-parallel fashion).

