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DATA REPRESENTATION

In the early days of computing, there were common misconceptions about com-
puters. One misconception was that the computer was only a giant adding
machine performing arithmetic operations. Computers could do much more
than that, even in the early days. The other common misconception, in contra-
diction to the first, was that the computer could do “anything.” We now know
that there are indeed classes of problems that even the most powerful imaginable
computer finds intractable with the von Neumann model. The correct percep-
tion, of course, is somewhere between the two.

We are familiar with computer operations that are non-arithmetic: computer
graphics, digital audio, even the manipulation of the computer mouse. Regard-
less of what kind of information is being manipulated by the computer, the
information must be represented by patterns of 1's and 0’ (also known as
“on-off” codes). This immediately raises the question of how that information
should be described or represented in the machine—this is the data representa-
tion, or data encoding. Graphical images, digital audio, or mouse clicks must all
be encoded in a systematic, agreed-upon manner.

We might think of the decimal representation of information as the most natural
when we know it the best, but the use of on-off codes to represent information
predated the computer by many years, in the form of Morse code.

This chapter introduces several of the simplest and most important encodings:
the encoding of signed and unsigned fixed point numbers, real numbers (referred
to as floating point numbers in computer jargon), and the printing characters.
We shall see that in all cases there are multiple ways of encoding a given kind of
data, some useful in one context, some in another. We will also take an early look
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at computer arithmetic for the purpose of understanding some of the encoding
schemes, though we will defer details of computer arithmetic until Chapter 3.

In the process of developing a data representation for computing, a crucial issue
is deciding how much storage should be devoted to each data value. For example,
a computer architect may decide to treat integers as being 32 bits in size, and to
implement an ALU that supports arithmetic operations on those 32-bit values
that return 32 bit results. Some numbers can be too large to represent using 32
bits, however, and in other cases, the operands may fit into 32 bits, but the result
of a computation will not, creating an overflow condition, which is described in
Chapter 3. Thus we need to understand the limits imposed on the accuracy and
range of numeric calculations by the finite nature of the data representations. We
will investigate these limits in the next few sections.

In a fixed point number system, each humber has exactly the same number of
digits, and the “point” is always in the same place. Examples from the decimal
number system would be 0.23, 5.12, and 9.11. In these examples each number
has 3 digits, and the decimal point is located two places from the right. Examples
from the binary number system (in which each digit can take on only one of the
values: 0 or 1) would be 11.10, 01.10, and 00.11, where there are 4 binary digits
and the binary point is in the middle. An important difference between the way
that we represent fixed point numbers on paper and the way that we represent
them in the computer is that when fixed point numbers are represented in the
computer the binary point is not stored anywhere, but only assumed to be in a cer-
tain position. One could say that the binary point exists only in the mind of the
programmer.

We begin coverage of fixed point numbers by investigating the range and preci-
sion of fixed point numbers, using the decimal number system. We then take a
look at the nature of number bases, such as decimal and binary, and how to con-
vert between the bases. With this foundation, we then investigate several ways of
representing negative fixed point numbers, and take a look at simple arithmetic
operations that can be performed on them.

RANGE AND PRECISION IN FIXED POINT NUMBERS

A fixed point representation can be characterized by the range of expressible
numbers (that is, the distance between the largest and smallest numbers) and the
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precision (the distance between two adjacent numbers on a number line.) For
the fixed-point decimal example above, using three digits and the decimal point
placed two digits from the right, the range is from 0.00 to 9.99 inclusive of the
endpoints, denoted as [0.00, 9.99], and the precision is 1/2 of the difference
between two “adjoining” numbers, such as 5.01 and 5.02, which have a differ-
ence of .01. The precision is this .01/2 = .005. That is, we can represent any
number within the range 0.00 to 9.99 to within .005 of its true or precise value.

Notice how range and precision trade off: with the decimal point on the far
right, the range is [000, 999] and the precision is 0.5. With the decimal point at
the far left, the range is [.000, .999] and the precision is .0005.

In either case, there are only 10° different decimal “objects,” ranging from 000 to
999, and thus it is possible to represent only 1,000 different items, regardless of
how we apportion range and precision.

There is no reason why the range must begin with 0. A 2-digit decimal number
can have a range of [00,99] or a range of [-50, +49], or even a range of [-99, +0].
The representation of negative numbers is covered more fully in Section 2.2.6.

Range and precision are important issues in computer architecture because both
are finite in the implementation of the architecture, but are infinite in the real
world, and so the user must be aware of the limitations of trying to represent
external information in internal form.

THE ASSOCIATIVE LAW OF ALGEBRA DOES NOT ALWAYS HOLD
IN COMPUTERS

In early mathematics, we learned the associative law of algebra:
at(-c)=(@+h)-c¢

As we will see, the associative law of algebra does not hold for fixed point num-
bers having a finite representation. Consider a 1-digit decimal fixed point repre-
sentation with the decimal point on the right, and a range of [0, 9], witha = 7,
b=4,and c=3. Nowa+(b-¢)=7+(4-3)=7+1=8.But(a+h)-c=(7+4)-3
=11 -3, but 11 is outside the range of our number system! We have overflow in
an intermediate calculation, but the final result is within the number system.
This is every bit as bad because the final result will be wrong if an intermediate
result is wrong.
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Thus we can see by example that the associative law of algebra does not hold for
finite-length fixed point numbers. This is an unavoidable consequence of this
form of representation, and there is nothing practical to be done except to detect
overflow wherever it occurs, and either terminate the computation immediately
and notify the user of the condition, or, having detected the overflow, repeat the
computation with numbers of greater range. (The latter technique is seldom
used except in critical applications.)

RADIX NUMBER SYSTEMS

In this section, we learn how to work with numbers having arbitrary bases,
although we will focus on the bases most used in digital computers, such as base
2 (binary), and its close cousins base 8 (octal), and base 16 (hexadecimal.)

The base, or radix of a number system defines the range of possible values that a
digit may have. In the base 10 (decimal) number system, one of the 10 values: 0,
1,2,3,4,5,6,7,8,9is used for each digit of a number. The most natural sys-
tem for representing numbers in a computer is base 2, in which data is repre-
sented as a collection of 1's and 0.

The general form for determining the decimal value of a number in a radix k
fixed point number system is shown below:

n-1
Value = Z b, X'

i=-m

The value of the digit in position i is given by b;. There are n digits to the left of
the radix point and there are m digits to the right of the radix point. This form of
a number, in which each position has an assigned weight, is referred to as a
weighted position code. Consider evaluating (541.25),¢, in which the subscript
10 represents the base. We have n =3, m =2, and k = 10:

5x10%+4x101+1x10%9+2x101+5x102 =
(500)1 + (40)10 + (1)19 *+ (2/10)1g + (5/100);9 = (541.25);

Now consider the base 2 number (1010.01), in whichn =4, m =2, and k = 2:
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1x22+0x22+1x2 +0x2040x214+1x272

()10 * (0)10 + (2)10 * (0)10 + (0/2)19 + (1/4)19 (10.25)19
This suggests how to convert a number from an arbitrary base into a base 10
number using the polynomial method. The idea is to multiply each digit by the
weight assigned to its position (powers of two in this example) and then sum up
the terms to obtain the converted number. Although conversions can be made
among all of the bases in this way, some bases pose special problems, as we will
see in the next section.

Note: in these weighted number systems we define the bit that carries the most
weight as the most significant bit, MSB, and the bit that carries the least weight
as the least signficant bit, LSB. Conventionally the MSB is the leftmost bit and
the LSB the rightmost bit.

CONVERSIONS AMONG RADICES

In the previous section, we saw an example of how a base 2 number can be con-
verted into a base 10 number. A conversion in the reverse direction is more
involved. The easiest way to convert fixed point numbers containing both integer
and fractional parts is to convert each part separately. Consider converting
(23.375)1 to base 2. We begin by separating the number into its integer and
fractional parts:

(23375)10 = (23)10 + (375)10

Converting the Integer Part of a Fixed Point Number—The Remainder Method

As suggested in the previous section, the general polynomial form for represent-
ing a binary integer is:

i-1

bi><2"+bi_1><2 +...+b1><21+b0x20

If we divide the integer by 2, then we will obtain:

b,-xzi_l+bi_1x2"_2+ +b1x20
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with a remainder of by. As a result of dividing the original integer by 2, we dis-
cover the value of the first binary coefficient by. We can repeat this process on the
remaining polynomial and determine the value of b;. We can continue iterating
the process on the remaining polynomial and thus obtain all of the b;. This pro-
cess forms the basis of the remainder method of converting integers between
bases.

We now apply the remainder method to convert (23),, to base 2. As shown in
Figure 2-1, the integer is initially divided by 2, which leaves a remainder of O or

Integer Remainder

232 = \11 1 <«— Least significant bit
*—I

1172 = 5 1

*—I

52 = 2 1

*—I

22 = 1 0

*—I

12 = 0 1 <«<— Most significant bit

(23);9 = (10111),

Figure 2-1 A conversion from a base 10 integer to a base 2 integer using the remainder method.

1. For this case, 23/2 produces a quotient of 11 and a remainder of 1. The first
remainder is the least significant binary digit (bit) of the converted number (the
rightmost bit). In the next step 11 is divided by 2, which creates a quotient of 5
and a remainder of 1. Next, 5 is divided by 2, which creates a quotient of 2 and a
remainder of 1. The process continues until we are left with a quotient of 0. If we
continue the process after obtaining a quotient of 0, we will only obtain 0s for
the quotient and remainder, which will not change the value of the converted
number. The remainders are collected into a base 2 number in the order shown
in Figure 2-1 to produce the result (23);¢ = (10111),. In general, we can convert
any base 10 integer to any other base by simply dividing the integer by the base
to which we are converting.

We can check the result by converting it from base 2 back to base 10 using the
polynomial method:
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(10111), =1x2%+0x2%+1x2%2+1x2t+1x20
=16+0+4+2+1

=(23)10

At this point, we have converted the integer portion of (23.375),q into base 2.

Converting the Fractional Part of a Fixed Point Number—The Multiplication
Method

The conversion of the fractional portion can be accomplished by successively
multiplying the fraction by 2 as described below.

A binary fraction is represented in the general form:

b_l><2_1+b_2><2_2+b_3><2_3+

If we multiply the fraction by 2, then we will obtain:

by +b X2 +b %27+ ..

We thus discover the coefficient b_;. If we iterate this process on the remaining
fraction, then we will obtain successive b;. This process forms the basis of the
multiplication method of converting fractions between bases. For the example
used here (Figure 2-2), the initial fraction (.375)1g is less than 1. If we multiply it
by 2, then the resulting number will be less than 2. The digit to the left of the
radix point will then be 0 or 1. This is the first digit to the right of the radix point
in the converted base 2 number, as shown in the figure. We repeat the process on
the fractional portion until we are either left with a fraction of 0, at which point
only trailing O’s are created by additional iterations, or we have reached the limit
of precision used in our representation. The digits are collected and the result is
obtained: (.375)1g = (.011),.

For this process, the multiplier is the same as the target base. The multiplier is 2
here, but if we wanted to make a conversion to another base, such as 3, then we
would use a multiplier of 3.2

We again check the result of the conversion by converting from base 2 back to
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v Most significant bit

375 x 2 = 0.75

I
\
.75 X 2 = 15

I
Y
5 X 2 = 10

Least significant bit
(:375)10 = (.011),

Figure 2-2 A conversion from a base 10 fraction to a base 2 fraction using the multiplication meth-
od.

base 10 using the polynomial method as shown below:
(011),=0x271+1x272+1x273=0+1/4+1/8=(375).

We now combine the integer and fractional portions of the number and obtain
the final result:

(23.375)10 = (10111.011),.

Non Terminating Fractions

Although this method of conversion will work among all bases, some precision
can be lost in the process. For example, not all terminating base 10 fractions have
a terminating base 2 form. Consider converting (.2),¢ to base 2 as shown in Fig-
ure 2-3. In the last row of the conversion, the fraction .2 reappears, and the pro-
cess repeats ad infinitum. As to why this can happen, consider that any
non-repeating base 2 fraction can be represented as i/2K for some integers i and k.
(Repeating fractions in base 2 cannot be so represented.) Algebraically,

i/2K = ix5K/(2kx5K) = ix5K/10K = /10K
where j is the integer ix5K. The fraction is thus non-repeating in base 10. This

hinges on the fact that only non-repeating fractions in base b can be represented
as i/bX for some integers i and k. The condition that must be satisfied for a

1. Alternatively, we can use the base 10 number system and also avoid the conversion if we
retain a base 2 representation, in which combinations of 1’s and 0’s represent the base 10 digits.
This is known as binary coded decimal (BCD), which we will explore later in the chapter.
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2 x 2 = 04
I

]

4 x 2 = 08
|

]

8 x 2 = 16
|

Y

6 x 2 = 12
|

]

2 x 2 = 04

Figure 2-3 A terminating base 10 fraction that does not have a terminating base 2 form.

non-repeating base 10 fraction to have an equivalent non-repeating base 2 frac-
tion is;

i/10K = i/(5%x2K) = jr2k

where j = i/5, and 5% must be a factor of i. For one digit decimal fractions, only
(.0)10 and (.5);¢ are non-repeating in base 2 (20% of the possible fractions); for
two digit decimal fractions, only (.00)19, (.25)19, (.50)10, and (.75),q are
non-repeating (4% of the possible fractions); etc. There is a link between rela-
tively prime numbers and repeating fractions, which is helpful in understanding
why some terminating base 10 fractions do not have a terminating base 2 form.
(Knuth, 1981) provides some insight in this area.

Binary versus Decimal Representations

While most computers use base 2 for internal representation and arithmetic,
some calculators and business computers use an internal representation of base
10, and thus do not suffer from this representational problem. The motivation
for using base 10 in business computers is not entirely to avoid the terminating
fraction problem, however, but also to avoid the conversion process at the input
and output units which historically have taken a significant amount of time.

Binary, Octal, and Hexadecimal Radix Representations

While binary numbers reflect the actual internal representation used in most
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machines, they suffer from the disadvantage that numbers represented in base 2
tend to need more digits than numbers in other bases, (why?) and it is easy to
make errors when writing them because of the long strings of 1’s and 0. We
mentioned earlier in the Chapter that base 8, octal radix, and base 16, hexadec-
imal radix, are related to base 2. This is due to the three radices all being divisi-
ble by 2, the smallest one. We show below that converting among the three bases
2, 8, and 16 is trivial, and there are significant practical advantages to represent-
ing numbers in these bases.

Binary numbers may be considerably wider than their base 10 equivalents. As a
notational convenience, we sometimes use larger bases than 2 that are even mul-
tiples of 2. Converting among bases 2, 8, or 16 is easier than converting to and
from base 10. The values used for the base 8 digits are familiar to us as base 10
digits, but for base 16 (hexadecimal) we need six more digits than are used in
base 10. The letters A, B, C, D, E, F or their lower-case equivalents are com-
monly used to represent the corresponding values (10, 11, 12, 13, 14, 15) in
hexadecimal. The digits commonly used for bases 2, 8, 10, and 16 are summa-
rized in Figure 2-4. In comparing the base 2 column with the base 8 and base 16

Binary Octal Decimal Hexadecimal
(base 2) (base 8) (base 10) (base 16)

0 0 0 0
1 1 1 1
10 2 2 2
11 3 3 3
100 4 4 4
101 5 5 5
110 6 6 6
111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

Figure 2-4  Values for digits in the binary, octal, decimal, and hexadecimal number systems.

columns, we need three bits to represent each base 8 digit in binary, and we need
four bits to represent each base 16 digit in binary. In general, k bits are needed to
represent each digit in base 2% in which k is an integer, so base 22 = 8 uses three
bits and base 2* = 16 uses four bits.
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In order to convert a base 2 number into a base 8 number, we partition the base
2 number into groups of three starting from the radix point, and pad the outer-
most groups with 0s as needed to form triples. Then, we convert each triple to
the octal equivalent. For conversion from base 2 to base 16, we use groups of
four. Consider converting (10110), to base 8:

(10110); = (010); (110); = (2)g (6)g = (26)g

Notice that the leftmost two bits are padded with a 0 on the left in order to cre-
ate a full triplet.

Now consider converting (10110110), to base 16:
(10110110), = (1011), (0110), = (B)1¢ ()1 = (B6)16

The conversion methods can be used to convert a number from any base to any
other base, but it may not be very intuitive to convert something like (513.03)g
to base 7. As an aid in performing an unnatural conversion, we can convert to
the more familiar base 10 form as an intermediate step, and then continue the
conversion from base 10 to the target base. As a general rule, we use the polyno-
mial method when converting into base 10, and we use the remainder and multi-
plication methods when converting out of base 10.

AN EARLY LOOK AT COMPUTER ARITHMETIC

We will explore computer arithmetic in detail in Chapter 3, but for the moment,
we need to learn how to perform simple binary addition because it is used in rep-
resenting signed binary numbers. Binary addition is performed similar to the
way we perform decimal addition by hand, as illustrated in Figure 2-5. Two
binary numbers A and B are added from right to left, creating a sum and a carry
in each bit position. Since the rightmost bits of A and B can each assume one of
two values, four cases must be considered: 0+ 0,0+ 1,1+0,and 1 + 1, witha
carry of 0, as shown in the figure. The carry into the rightmost bit position
defaults to 0. For the remaining bit positions, the carry into the position can be 0
or 1, so that a total of eight input combinations must be considered as shown in
the figure.

Notice that the largest number we can represent using the eight-bit format
shown in Figure 2-5is (11111111), = (255),( and that the smallest number that
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Caryin > 0 0 1 1 1 1
Operands[: 0 0 1 1 0 0 1 1
+0 +1 +0 + + 0 + 1 + + 1
00 01 01 10 01 10 10 11
Carry Sum Example:

out Carry 11110000
Addend: A 01111100 (124)
Augend:B + 01011010 (90)
Sum 11010110 (214

Figure 2-5 Example of binary addition.

can be represented is (00000000), = (0);o. The bit patterns 11111111 and
00000000 and all of the intermediate bit patterns represent numbers on the
closed interval from 0 to 255, which are all positive numbers. Up to this point
we have considered only unsigned numbers, but we need to represent signed
numbers as well, in which (approximately) one half of the bit patterns is assigned
to positive numbers and the other half is assigned to negative numbers. Four
common representations for base 2 signed numbers are discussed in the next sec-
tion.

SIGNED FIXED POINT NUMBERS

Up to this point we have considered only the representation of unsigned fixed
point numbers. The situation is quite different in representing signed fixed point
numbers. There are four different ways of representing signed numbers that are
commonly used: sign-magnitude, one’s complement, two’s complement, and
excess notation. We will cover each in turn, using integers for our examples.
Throughout the discussion, the reader may wish to refer to Table 2.1 which
shows for a 3-bit number how the various representations appear.

Signed Magnitude

The signed magnitude (also referred to as sign and magnitude) representation
is most familiar to us as the base 10 number system. A plus or minus sign to the
left of a number indicates whether the number is positive or negative as in +124
or —=124¢. In the binary signed magnitude representation, the leftmost bit is used
for the sign, which takes on a value of O or 1 for ‘+’ or ‘—, respectively. The
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Decimal Unsigned Sign—-Mag. 1'sComp. 2sComp. Excess4
3 011 011 011 011 111
2 010 010 010 010 110
1 001 001 001 001 101
+0 000 000 000 000 100
-0 - 100 111 000 100
-1 - 101 110 111 011
-2 - 110 101 110 010
-3 - 111 100 101 001
-4 - - - 100 000

Table2.1: 3-bit Integer Representations

remaining bits contain the absolute magnitude. Consider representing (+12)q
and (-12), in an eight-bit format:

(+12)15 = (00001100),
(-12)0 = (10001100),

The negative number is formed by simply changing the sign bit in the positive
number from O to 1. Notice that there are both positive and negative representa-
tions for zero: 00000000 and 10000000.

There are eight bits in this example format, and all bit patterns represent valid
numbers, so there are 28 = 256 possible patterns. Only 28 — 1 = 255 different
numbers can be represented, however, since +0 and —0 represent the same num-
ber.

We will make use of the signed magnitude representation when we look at float-
ing point numbers in Section 2.3.

Onés Complement

The one’s complement operation is trivial to perform: convert all of the 1s in
the number to 0's, and all of the 0’s to 1's. See the fourth column in Table 2.1 for
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examples. We can observe from the table that in the one’s complement represen-
tation the leftmost bit is O for positive numbers and 1 for negative numbers, as it
is for the signed magnitude representation. This negation, changing 1’s to 0’s and
changing 0’s to 1, is known as complementing the bits. Consider again repre-
senting (+12)1¢ and (-12), in an eight-bit format, now using the one’s comple-
ment representation:

(+12) 10 = (00001100),
(-12)1p = (11110011),

Note again that there are representations for both +0 and -0, which are
00000000 and 11111111, respectively. As a result, there are only 28 — 1 = 255
different numbers that can be represented even though there are 28 different bit
patterns.

The one’s complement representation is not commonly used. This is at least
partly due to the difficulty in making comparisons when there are two represen-
tations for 0. There is also additional complexity involved in adding numbers,
which is discussed further in Chapter 3.

Twa's Complement

The two’s complement is formed in a way similar to forming the one’s comple-
ment: complement all of the bits in the number, but then add 1, and if that addi-
tion results in a carry-out from the most significant bit of the number, discard
the carry-out. Examination of the fifth column of Table 2.1 shows that in the
two’s complement representation, the leftmost bit is again O for positive num-
bers and is 1 for negative numbers. However, this number format does not have
the unfortunate characteristic of signed-magnitude and 1’s complement repre-
sentations: it has only one representation for zero. To see that this is true, con-
sider forming the negative of (+0)o, which has the bit pattern:

(+0)10 = (00000000),

Forming the one’s complement of (00000000), produces (11111111), and add-
ing 1 to it yields (00000000),, thus (—0);o = (00000000),. The carry out of the
leftmost position is discarded in two’s complement addition (except when detect-
ing an overflow condition). Since there is only one representation for 0, and since
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all bit patterns are valid, there are 28 = 256 different numbers that can be repre-
sented.

Consider again representing (+12),9 and (=12), in an eight-bit format, this
time using the two’s complement representation. Starting with (+12)9 =
(00001100),. Complement, or negate the number, producing (11110011),.
Now add 1, producing (11110100),, and thus (-12)1o = (11110100),

There is an equal number of positive and negative numbers provided zero is con-
sidered to be a positive number, which is reasonable because its sign bit is 0. The
positive numbers start at 0, but the negative numbers start at —1, and so the mag-
nitude of the most negative number is one greater than the magnitude of the
most positive number. The positive number with the largest magnitude is +127,
and the negative number with the largest magnitude is —128. There is thus no
positive number that can be represented that corresponds to the negative of
-128. If we try to form the two’s complement negative of —128, then we will
arrive at a negative number, as shown below:

(1284 = (10000000),
O
01111111
+ 1

(10000000),

The two’s complement representation is the representation most commonly used
in conventional computers, and we will use it throughout the book.

Excess Representation

In the excess or biased representation, the number is treated as unsigned, but is
“shifted” in value by subtracting the bias from it. The concept is to assign the
smallest numerical bit pattern, all zeros, to the negative of the bias, and assign the
remaining numbers in sequence as the bit patterns increase in magnitude. A con-
venient way to think of an excess representation is that a number is represented
as the sum of its two’s complement form and another number, which is known as
the “excess,” or “bias.” Once again, refer to Table 2.1, the rightmost column, for
examples.
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Consider again representing (+12),q and (—12)4¢ in an eight-bit format but now
using an excess 128 representation. An excess 128 number is formed by adding
128 to the original number, and then creating the unsigned binary version. For
(+12)19, we compute (128 + 12 = 140);9 and produce the bit pattern
(10001100),. For (-12)1g, we compute (128 + —12 = 116),4 and produce the
bit pattern (01110100),. Note that there is no numerical significance to the excess
value: it simply has the effect of shifting the representation of the two’s comple-
ment numbers.

There is only one excess representation for 0, since the excess representation is
simply a shifted version of the two’s complement representation. For the previous
case, the excess value is chosen to have the same bit pattern as the largest negative
number, which has the effect of making the numbers appear in numerically
sorted order if the numbers are viewed in an unsigned binary representation.
Thus, the most negative number is (—128),¢ = (00000000), and the most posi-
tive number is (+127)19 = (11111111),. This representation simplifies making
comparisons between numbers, since the bit patterns for negative numbers have
numerically smaller values than the bit patterns for positive numbers. This is
important for representing the exponents of floating point numbers, in which
exponents of two numbers are compared in order to make them equal for addi-
tion and subtraction. We will explore floating point representations in Section
2.3.

BINARY CODED DECIMAL

Numbers can be represented in the base 10 number system while still using a
binary encoding. Each base 10 digit occupies four bit positions, which is known
as binary coded decimal (BCD). Each BCD digit can take on any of 10 values.
There are 2% = 16 possible bit patterns for each base 10 digit, and as a result, six
bit patterns are unused for each digit. In Figure 2-6, there are four decimal signif-
icant digits, so 10% = 10,000 bit patterns are valid, even though 216 = 65 536 bit
patterns are possible with 16 bits.

Although some bit patterns are unused, the BCD format is commonly used in
calculators and in business applications. There are fewer problems in represent-
ing terminating base 10 fractions in this format, unlike the base 2 representation.
There is no need to convert data that is given at the input in base 10 form (as in
a calculator) into an internal base 2 representation, or to convert from an internal
representation of base 2 to an output form of base 10.
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@ IO 00 0‘ \0 01 1| ‘0 00 0I I0 00 1‘ (+301)10 ([;]Oirr:]e’lse%ngnienﬁs
Q)10 (310 (OFT D0 P

(;y 1001 0110 1001 1000 (:301);, Nine'scomplement
910 ®10 O ()10
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Figure 2-6  BCD representations of 301 (a) and =301 in nine’s complement (b) and ten’s comple-
ment (c).

Performing arithmetic on signed BCD numbers may not be obvious. Although
we are accustomed to using a signed magnitude representation in base 10, a dif-
ferent method of representing signed base 10 numbers is used in a computer. In
the nine’s complement number system, positive numbers are represented as in
ordinary BCD, but the leftmost digit is less than 5 for positive numbers and is 5
or greater for negative numbers. The nine’s complement negative is formed by
subtracting each digit from 9. For example, the base 10 number +301 is repre-
sented as 0301 (or simply 301) in both nine’s and ten’s complement as shown in
Figure 2-6a. The nine’s complement negative is 9698 (Figure 2-6b), which is
obtained by subtracting each digit in 0301 from 9.

The ten’s complement negative is formed by adding 1 to the nine’s complement
negative, so the ten’s complement representation of —301 is then 9698 + 1 =
9699 as shown in Figure 2-6¢. For this example, the positive numbers range from
0 — 4999 and the negative numbers range from 5000 to 9999.

The fixed point number representation, which we explored in Section 2.2, has a
fixed position for the radix point, and a fixed number of digits to the left and
right of the radix point. A fixed point representation may need a great many dig-
its in order to represent a practical range of numbers. For example, a computer
that can represent a number as large as a trillion! maintains at least 40 bits to the
left of the radix point since 249 = 1012. If the same computer needs to represent
one trillionth, then 40 bits must also be maintained to the right of the radix

1. In the American number system, which is used here, a trillion = 1012, In the British
number system, this is a “million million,” or simply a “billion.” The British “milliard,” or a “thou-
sand million” is what Americans call a “billion.”
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point, which results in a total of 80 bits per number.

In practice, much larger numbers and much smaller numbers appear during the
course of computation, which places even greater demands on a computer. A
great deal of hardware is required in order to store and manipulate numbers with
80 or more bits of precision, and computation proceeds more slowly for a large
number of digits than for a small number of digits. Fine precision, however, is
generally not needed when large numbers are used, and conversely, large num-
bers do not generally need to be represented when calculations are made with
small numbers. A more efficient computer can be realized when only as much
precision is retained as is needed.

RANGE AND PRECISION IN FLOATING POINT NUMBERS

A floating point representation allows a large range of expressible numbers to be
represented in a small number of digits by separating the digits used for precision
from the digits used for range. The base 10 floating point number representing
Avogadro’s number is shown below:

+6.023 x 1023

Here, the range is represented by a power of 10, 102 in this case, and the preci-
sion is represented by the digits in the fixed point number, 6.023 in this case. In
discussing floating point numbers, the fixed point part is often referred to as the
mantissa, or significand of the number. Thus a floating point number can be
characterized by a triple of numbers: sign, exponent, and significand.

The range is determined primarily by the number of digits in the exponent (two
digits are used here) and the base to which it is raised (base 10 is used here) and
the precision is determined primarily by the number of digits in the significand
(four digits are used here). Thus the entire number can be represented by a sign
and 6 digits, two for the exponent and four for the significand. Figure 2-7 shows
how the triple of sign, exponent, significand, might be formatted in a computer.

Position of decimal point

6 REE

Sign Exponent Significand
(two digits) (four digits)

Figure 2-7  Representation of a base 10 floating point number.
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Notice how the digits are packed together with the sign first, followed by the
exponent, followed by the significand. This ordering will turn out to be helpful
in comparing two floating point numbers. The reader should be aware that the
decimal point does not need to be stored with the number as long as the decimal
point is always in the same position in the significand. (This will be discussed in
Section 2.3.2, Normalization.)

If we need a greater range, and if we are willing to sacrifice precision, then we can
use just three digits in the fraction and have three digits left for the exponent
without increasing the number of digits used in the representation. An alterna-
tive method of increasing the range is to increase the base, which has the effect of
increasing the precision of the smallest numbers but decreasing the precision of
the largest numbers. The range/precision trade-off is a major advantage of using
a floating point representation, but the reduced precision can cause problems,
sometimes leading to disaster, an example of which is described in Section 2.4.

NORMALIZATION, AND THE HIDDEN BIT

A potential problem with representing floating point numbers is that the same
number can be represented in different ways, which makes comparisons and
arithmetic operations difficult. For example, consider the numerically equivalent
forms shown below:

3584.1 x 100 = 3.5841 x 103 = .35841 x 10%.

In order to avoid multiple representations for the same number, floating point
numbers are maintained in normalized form. That is, the radix point is shifted
to the left or to the right and the exponent is adjusted accordingly until the radix
point is to the left of the leftmost nonzero digit. So the rightmost number above
is the normalized one. Unfortunately, the number zero cannot be represented in
this scheme, so to represent zero an exception is made. The exception to this rule
is that zero is represented as all 0’s in the mantissa.

If the mantissa is represented as a binary, that is, base 2, number, and if the nor-
malization condition is that there is a leading “1” in the normalized mantissa,
then there is no need to store that “1” and in fact, most floating point formats do
not store it. Rather, it is “chopped off” before packing up the number for storage,
and it is restored when unpacking the number into exponent and mantissa. This
results in having an additional bit of precision on the right of the number, due to
removing the bit on the left. This missing bit is referred to as the hidden bit, also
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known as a hidden 1. For example, if the mantissa in a given format is .11010
after normalization, then the bit pattern that is stored is 1010—the left-most bit
is truncated, or hidden. We will see that the IEEE 754 floating point format uses
a hidden bit.

REPRESENTING FLOATING POINT NUMBERS IN THE COM-
PUTER—PRELIMINARIES

Let us design a simple floating point format to illustrate the important factors in
representing floating point numbers on the computer. Our format may at first
seem to be unnecessarily complex. We will represent the significand in signed
magnitude format, with a single bit for the sign bit, and three hexadecimal digits
for the magnitude. The exponent will be a 3-bit excess-4 number, with a radix of
16. The normalized form of the number has the hexadecimal point to the left of
the three hexadecimal digits.

The bits will be packed together as follows: The sign bit is on the left, followed
by the 3-bit exponent, followed by the three hexadecimal digits of the signifi-
cand. Neither the radix nor the hexadecimal point will be stored in the packed
form.

The reason for these rather odd-seeming choices is that numbers in this format
can be compared for =, #, <, and = in their “packed” format, which is shown in
the illustration below:

L N I 1L I
f Three-bit \ Three base 16 digits

Sign bit exponent

Implied radix
point

Consider representing (358)4q in this format.

The first step is to convert the fixed point number from its original base into a
fixed point number in the target base. Using the method described in Section
2.1.3, we convert the base 10 number into a base 16 number as shown below:
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Integer Remainder
358/16 = 22 6
22/16 = 1 6
1/16 = 0 1

Thus (358)1g = (166),6. The next step is to convert the fixed point number into
a floating point number:

(166)16 = (166.);5 x 16°

Note that the form 169 reflects a base of 16 with an exponent of 0, and that the
number 16 as it appears on the page uses a base 10 form. That is, (160)10 =
(100)16. This is simply a notational convenience used in describing a floating
point number.

The next step is to normalize the number:
(166.);5 x 16° = (.166)4 x 16°

Finally, we fill in the bit fields of the number. The number is positive, and so we
place a 0 in the sign bit position. The exponent is 3, but we represent it in excess
4, so the bit pattern for the exponent is computed as shown below:

011 (+3)10
Excess4 +100 (+4)10

Excess4exponent 111

Alternatively, we could have simply computed 3 + 4 = 7 in base 10, and then
made the equivalent conversion (7)1 = (111),.

Finally, each of the base 16 digits is represented in binary as 1 = 0001, 6 = 0110,
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and 6 = 0110. The final bit pattern is shown below:

0 111 00O01 0110 0110
1 1 1 11 ]

+ 3 1 6 6

Notice again that the radix point is not explicitly represented in the bit pattern,
but its presence is implied. The spaces between digits are for clarity only, and do
not suggest that the bits are stored with spaces between them. The bit pattern as
stored in a computer’s memory would look like this:

0111000101100110

The use of an excess 4 exponent instead of a two’s complement or a signed mag-
nitude exponent simplifies addition and subtraction of floating point numbers
(which we will cover in detail in Chapter 3). In order to add or subtract two nor-
malized floating point numbers, the smaller exponent (smaller in degree, not
magnitude) must first be increased to the larger exponent (this retains the range),
which also has the effect of unnormalizing the smaller number. In order to deter-
mine which exponent is larger, we only need to treat the bit patterns as unsigned
numbers and then make our comparison. That is, using an excess 4 representa-
tion, the smallest exponent is —4, which is represented as 000. The largest expo-
nent is +3, which is represented as 111. The remaining bit patterns for -3, -2,
-1, 0, +1, and +2 fall in their respective order as 001, 010, 011, 100, 101, and
110.

Now if we are given the bit pattern shown above for (358)y along with a
description of the floating point representation, then we can easily determine the
number. The sign bit is a 0, which means that the number is positive. The expo-
nent in unsigned form is the number (+7)1q, but since we are using excess 4, we
must subtract 4 from it, which results in an actual exponent of (+7 — 4 = +3)4,.
The fraction is grouped in four-bit hexadecimal digits, which gives a fraction of
(.166),¢. Putting it all together results in (+.166 x 163)16 = (358)10.

Now suppose that only 10 bits are allowed for the fraction in the above example,
instead of the 12 bits that group evenly into fours for hexadecimal digits. How
does the representation change? One approach might be to round the fraction
and adjust the exponent as necessary. Another approach, which we use here, is to
simply truncate the least significant bits by chopping and avoid making adjust-
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ments to the exponent, so that the number we actually represent is:

Sign  Exponent Fraction

If we treat the missing bits as 0's, then this bit pattern represents (.164 x 163)16.
This method of truncation produces a biased error, since values of 00, 01, 10,
and 11 in the missing bits are all treated as O, and so the error is in the range
from 0 to (.003),6. The bias comes about because the error is not symmetric
about 0. We will not explore the bias problem further here, but a more thorough
discussion can be found in (Hamacher et al., 1990).

We again stress that whatever the floating point format is, that it be known to all
parties that intend to store or retrieve numbers in that format. The Institute of
Electrical and Electronics Engineers (IEEE), has taken the lead in standardizing
floating point formats. The IEEE 754 floating point format, which is in nearly
universal usage, is discussed in Section 2.3.5.

ERROR IN FLOATING POINT REPRESENTATIONS

The fact that finite precision introduces error means that we should consider
how great the error is (by “error”, we mean the distance between two adjacent
representable numbers), and whether it is acceptable for our application. As an
example of a potential pitfall, consider representing one million in floating point,
and then subtracting one million 1's from it. We may still be left with a million if
the error is greater than 1.1

In order to characterize error, range, and precision, we use the following nota-
tion:

b Base
S Number of significant digits (not bits) in the fraction
1. Most computers these days will let this upper bound get at least as high

as 8 million using the default precision.
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M Largest exponent
m Smallest exponent

The number of significant digits in the fraction is represented by s, which is dif-
ferent than the number of bits in the fraction if the base is anything other than 2
(for example, base 16 uses four bits for each digit). In general, if the base is 2k
where K is an integer, then k bits are needed to represent each digit. The use of a
hidden 1 increases s by one bit even though it does not increase the number of
representable numbers. In the previous example, there are three significant digits
in the base 16 fraction and there are 12 bits that make up the three digits. There
are three bits in the excess 4 exponent, which gives an exponent range of [—22 to
22 - 1]. For this case, b= 16,5=3, M = 3, and m = —4.

In the analysis of a floating point representation, there are five characteristics that
we consider: the number of representable numbers, the numbers that have the
largest and smallest magnitudes (other than zero), and the sizes of the largest and
smallest gaps between successive numbers.

The number of representable numbers can be determined as shown in Figure
2-8. The sign bit can take on two values, as indicated by the position marked

®» & 0 0 6

2 x (M-m+1) x (b-1) x bsl + 1
L 1 L 1 1
Thenumber  Firstdigit Remaining T

Sign bit of exponents  of fraction digitsof  Zero

fraction

Figure 2-8  Calculation of the number of representable numbers in a floating point representation.

with an encircled “A.” The total number of exponents is indicated in position B.
Note that not all exponent bit patterns are valid in all representations. The IEEE
754 floating point standard, which we will study shortly, has a smallest exponent
of =126 even though the eight-bit exponent can support a number as small as
—128. The forbidden exponents are reserved for special numbers, such as zero
and infinity.

The first digit of the fraction is considered next, which can take on any value
except 0 in a normalized representation (except when a hidden 1 is used) as indi-
cated by (b — 1) at position C. The remaining digits of the fraction can take on
any of the b values for the base, as indicated by bl at position D. If a hidden 1 is
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used, then position C is removed and position 4 is replaced with b®. Finally, there
must be a representation for O, which is accounted for in position E.

Consider now the numbers with the smallest and largest magnitudes. The num-
ber with the smallest magnitude has the smallest exponent and the smallest non-
zero normalized fraction. There must be a nonzero value in the first digit, and
since a 1 is the smallest value we can place there, the smallest fraction is b=l The
number with the smallest magnitude is then b™b™ = b™1, Similarly, the num-
ber with the largest magnitude has the largest exponent and the largest fraction
(when the fraction is all 1's), which is equal to b -(1 - b™).

The smallest and largest gaps are computed in a similar manner. The smallest gap
occurs when the exponent is at its smallest value and the least significant bit of
the fraction changes. This gap is b™b™ = b™™. The largest gap occurs when the
exponent is at its largest value and the least significant bit of the fraction changes.
This gap is bM-b™ = pM=,

As an example, consider a floating point representation in which there is a sign
bit, a two-bit excess 2 exponent, and a three-bit normalized base 2 fraction in
which the leading 1 is visible; that is, the leading 1 is not hidden. The representa-
tion of 0 is the bit pattern 000000. A number line showing all possible numbers
that can be represented in this format is shown in Figure 2-9. Notice that there is

|
\

32| Nlew ——

b
s

2 +1
3 —2

Figure 2-9 A number line showing all representable numbers in a simple floating point format.

a relatively large gap between 0 and the first representable number, because the
normalized representation does not support bit patterns that correspond to num-
bers between 0 and the first representable number.

The smallest representable number occurs when the exponent and the fraction
are at their smallest values. The smallest exponent is —2, and the smallest normal-
ized fraction is (.100),. The smallest representable number is then b™xbh™t =
pMt=22"1=1/8.
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Similarly, the largest representable number occurs when the exponent and the
fraction are both at their largest values. The largest fraction occurs when the frac-
tion is all 1's, which is a number that is 272 less than 1 since there are three digits
in :t%he fraction. The largest representable number is then b™ x(1 - b™) = 21 x (1 -
27°)=7/4.

The smallest gap occurs when the exponent is at its smallest value and the least
significant bit of the fraction changes, which is b™xb™ = p™™S = 27273 = 1/32.

Similarly, the largest gap occurs when the exponent is at its largest value and the
least significant bit of the fraction changes, which is bMxb™ = pM=s = 2173 = 1/4,

The number of bit patterns that represent valid numbers is less than the number
of possible bit patterns, due to normalization. As discussed earlier, the number of
representable numbers consists of five parts, which take into account the sign bit,
the exponents, the first significant digit, the remaining digits, and the bit pattern
for 0. This is computed as shown below:

2x(M-m)+1)x(b-1)xb"1+1
=2x((1-(-2)+1)x(2-1)x2%1+1
=33
Notice that the gaps are small for small numbers and that the gaps are large for
large numbers. In fact, the relative error is approximately the same for all num-

bers. If we take the ratio of a large gap to a large number, and compare that to the
ratio of a small gap to a small number, then the ratios are the same:

Alargegap—— > bM-s b 1

A large number ————> pM x (1 —bs) - 1-bs b1

and
Asmalgagp ———> bm-s bs 1

A smdl number ——> b™ x (1 —b-s) - 1-bs bl

The representation for a “small number” is used here, rather than the smallest
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number, because the large gap between zero and the first representable number is
a special case.

EXAMPLE E N

Consider the problem of converting (9.375 x 10~2);( to base 2 scientific notation.
That is, the result should have the form x.yy x 2%. We start by converting from
base 10 floating point to base 10 fixed point by moving the decimal point two
positions to the left, which corresponds to the =2 exponent: .09375. We then con-
vert from base 10 fixed point to base 2 fixed point by using the multiplication
method:

09375 x 2 = 0.1875
1875 x 2 = 0.375
375 % 2 = 0.75
15 X 2 = 1.5

5 X 2 = 1.0

s0 (.09375); = (.00011),. Finally, we convert to normalized base 2 floating point:
00011 =.00011 x2°=1.1x27% u

THE IEEE 754 FLOATING POINT STANDARD

There are many ways to represent floating point numbers, a few of which we
have already explored. Each representation has its own characteristics in terms of
range, precision, and the number of representable numbers. In an effort to
improve software portability and ensure uniform accuracy of floating point cal-
culations, the IEEE 754 floating point standard for binary numbers was devel-
oped (IEEE, 1985). There are a few entrenched product lines that predate the
standard that do not use it, such as the IBM/370, the DEC VAX, and the Cray
line, but virtually all new architectures generally provide some level of IEEE 754
support.

The IEEE 754 standard as described below must be supported by a computer sys-
tem, and not necessarily by the hardware entirely. That is, a mixture of hardware
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and software can be used while still conforming to the standard.

2.3.5.1 Formats

There are two primary formats in the IEEE 754 standard: single precision and
double precision. Figure 2-10 summarizes the layouts of the two formats. The

32 hits
. | |
prSIegi%} on  [[8bits] 23 bits |
Exponent Fraction
Sign
(Lo 64 bits
| |
pIrDe(::lijglc()en || 11bits | 52 pits

Exponent Fraction

Figure 2-10  Single precision and double precision IEEE 754 floating point formats.

single precision format occupies 32 bits, whereas the double precision format
occupies 64 bits. The double precision format is simply a wider version of the
single precision format.

The sign bit is in the leftmost position and indicates a positive or negative num-
ber for a 0 or a 1, respectively. The 8-bit excess 127 (not 128) exponent follows,
in which the bit patterns 00000000 and 11111111 are reserved for special cases,
as described below. For double precision, the 11-bit exponent is represented in
excess 1023, with 00000000000 and 11111111111 reserved. The 23-bit base 2
fraction follows. There is a hidden bit to the left of the binary point, which when
taken together with the single-precision fraction form a 23 + 1 = 24-bit signifi-
cand of the form 1.fff...f where the fff...f pattern represents the 23-bit fractional
part that is stored. The double-precision format also uses a hidden bit to the left
of the binary point, which supports a 52 + 1 = 53 bit significand. For both for-
mats, the number is normalized unless denormalized numbers are supported, as
described later.

There are five basic types of numbers that can be represented. Nonzero normal-
ized numbers take the form described above. A so-called “clean zero” is repre-
sented by the reserved bit pattern 00000000 in the exponent and all 0s in the
fraction. The sign bit can be 0 or 1, and so there are two representations for zero:
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+0 and -0.

Infinity has a representation in which the exponent contains the reserved bit pat-
tern 11111111, the fraction contains all 0, and the sign bit is 0 or 1. Infinity is
useful in handling overflow situations or in giving a valid representation to a
number (other than zero) divided by zero. If zero is divided by zero or infinity is
divided by infinity, then the result is undefined. This is represented by the NaN
(not a number) format in which the exponent contains the reserved bit pattern
11111111, the fraction is nonzero and the sign bit is 0 or 1. A NaN can also be
produced by attempting to take the square root of —1.

As with all normalized representations, there is a large gap between zero and the
first representable number. The denormalized, “dirty zero” representation allows
numbers in this gap to be represented. The sign bit can be 0 or 1, the exponent
contains the reserved bit pattern 00000000 which represents —126 for single pre-
cision (-1022 for double precision), and the fraction contains the actual bit pat-
tern for the magnitude of the number. Thus, there is no hidden 1 for this format.
Note that the denormalized representation is not an unnormalized representation.
The key difference is that there is only one representation for each denormalized
number, whereas there are infinitely many unnormalized representations.

Figure 2-11 illustrates some examples of IEEE 754 floating point numbers.

Value Bit Pattern
Sign Exponent Fraction
@ +1.101 x 25 0 1000 0100 101 0000 0000 0000 0000 0000
(b) -1.01011 x 2-126 1 0000 0001 010 1100 0000 0000 0000 0000
(© +1.0 x 2127 0 1111 1110 000 0000 0000 0000 0000 0000
(d) +0 0 0000 0000 000 0000 0000 0000 0000 0000
(e -0 1 0000 0000 000 0000 0000 0000 0000 0000
) +00 0 1111 1111 000 0000 0000 0000 0000 0000
(9) +2-128 0 0000 0000 010 0000 0000 0000 0000 0000
(h) +NaN 0 1111 1111 011 0111 0000 0000 0000 0000
0) +2-128 0 01101111111 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 OO0 0000 0000

Figure 2-11  Examples of IEEE 754 floating point numbers in single precision format (a — h) and
double precision format (i). Spaces are shown for clarity only: they are not part of the representation.

Examples (a) through (h) are in single precision format and example (i) is in dou-
ble precision format. Example (a) shows an ordinary single precision number.
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Notice that the significand is 1.101, but that only the fraction (101) is explicitly
represented. Example (b) uses the smallest single precision exponent (—126) and
example (c) uses the largest single precision exponent (127).

Examples (d) and (e) illustrate the two representations for zero. Example (f) illus-
trates the bit pattern for +co. There is also a corresponding bit pattern for —co.
Example (g) shows a denormalized number. Notice that although the number
itself is 27128, the smallest representable exponent is still —126. The exponent for
single precision denormalized numbers is always —126, which is represented by
the bit pattern 00000000 and a nonzero fraction. The fraction represents the
magnitude of the number, rather than a significand. Thus we have +27128 = + 01
x 27126 \hich is represented by the bit pattern shown in Figure 2-11g.

Example (h) shows a single precision NaN. A NaN can be positive or negative.
Finally, example (i) revisits the representation of 27128 but now using double pre-
cision. The representation is for an ordinary double precision number and so
there are no special considerations here. Notice that 27228 has a significand of
1.0, which is why the fraction field is all O’s.

In addition to the single precision and double precision formats, there are also
single extended and double extended formats. The extended formats are not
visible to the user, but they are used to retain a greater amount of internal preci-
sion during calculations to reduce the effects of roundoff errors. The extended
formats increase the widths of the exponents and fractions by a number of bits
that can vary depending on the implementation. For instance, the single
extended format adds at least three bits to the exponent and eight bits to the frac-
tion. The double extended format is typically 80 bits wide, with a 15-bit expo-
nent and a 64-bit fraction.

2.3.5.2 Rounding

An implementation of IEEE 754 must provide at least single precision, whereas
the remaining formats are optional. Further, the result of any single operation on
floating point numbers must be accurate to within half a bit in the least signifi-
cant bit of the fraction. This means that some additional bits of precision may
need to be retained during computation (referred to as guard bits), and there
must be an appropriate method of rounding the intermediate result to the num-
ber of bits in the fraction.

There are four rounding modes in the IEEE 754 standard. One mode rounds to
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0, another rounds toward +co, and another rounds toward —co. The default mode
rounds to the nearest representable number. Halfway cases round to the number
whose low order digit is even. For example, 1.01101 rounds to 1.0110 whereas
1.01111 rounds to 1.1000.

During the 1991-1992 Operation Desert Storm conflict between Coalition
forces and Irag, the Coalition used a military base in Dhahran, Saudi Arabia that
was protected by six U.S. Patriot Missile batteries. The Patriot system was origi-
nally designed to be mobile and to operate for only a few hours in order to avoid
detection.

The Patriot system tracks and intercepts certain types of objects, such as cruise
missiles or Scud ballistic missiles, one of which hit a U.S. Army barracks at
Dhahran on February 5, 1991, killing 28 Americans. The Patriot system failed to
track and intercept the incoming Scud due to a loss of precision in converting
integers to a floating point number representation.

A radar system operates by sending out a train of electromagnetic pulses in vari-
ous directions and then listening for return signals that are reflected from objects
in the path of the radar beam. If an airborne object of interest such as a Scud is
detected by the Patriot radar system, then the position of a range gate is deter-
mined (see Figure 2-12), which estimates the position of the object being tracked
during the next scan. The range gate also allows information outside of its
boundaries to be filtered out, which simplifies tracking. The position of the
object (a Scud for this case) is confirmed if it is found within the range gate.

The prediction of where the Scud will next appear is a function of the Scud’s
velocity. The Scud’s velocity is determined by its change in position with respect
to time, and time is updated in the Patriot’s internal clock in 100 ms intervals.
Velocity is represented as a 24-bit floating point number, and time is represented
as a 24-bit integer, but both must be represented as 24-bit floating point num-
bers in order to predict where the Scud will next appear.

The conversion from integer time to real time results in a loss of precision that
increases as the internal clock time increases. The error introduced by the conver-
sion results in an error in the range gate calculation, which is proportional to the
target’s velocity and the length of time that the system is running. The cause of
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Missile
outside of

Validation range gate

Figure 2-12  Effect of conversion error on range gate calculation.

the Dhahran incident, after the Patriot battery had been operating continuously
for over 100 hours, is that the range gate shifted by 687 m, resulting in the failed
interception of a Scud.

The conversion problem was known two weeks in advance of the Dhahran inci-
dent as a result of data provided by lsrael, but it took until the day after the
attack for new software to arrive due to the difficulty of distributing bug fixes in
a wartime environment. A solution to the problem, until a software fix could be
made available, would have been to simply reboot the system every few hours
which would have the effect of resetting the internal clock. Since field personnel
were not informed of how long was too long to keep a system running, which
was in fact known at the time from data provided by lsrael, this solution was
never implemented. The lesson for us is to be very aware of the limitations of
relying on calculations that use finite precision.

Unlike real numbers, which have an infinite range, there is only a finite number
of characters. An entire character set can be represented with a small number of
bits per character. Three of the most common character representations, ASCII,
EBCDIC, and Unicode, are described here.



THE ASCII CHARACTER SET

The American Standard Code for Information Interchange (ASCII) is summa-
rized in Figure 2-13, using hexadecimal indices. The representation for each
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00 NUL |10 DLE|20 SP |30 O |40 @ |50 P |60 70 p
01 SOH|11 DC1|21 ! |31 1 |41 A |51 Q |61 a |71 ¢
02 STX |12 DC2|22 " |32 2 |42 B |52 R |62 b |72 r
03 ETX |13 DC3 |23 # |33 3 |43 C |53 S |63 ¢ |73 s
04 EOT |14 DC4 |24 $ |34 4 |4 D |54 T |64 d |74 t
05 ENQ|15 NAK|25 % |35 5 |45 E |55 U |65 e [75 u
06 ACK|16 SYN|26 & |36 6 |46 F |5 V |66 f [76 Vv
07 BEL |17 ETB |27 ' |37 7 |47 G |57 W |67 g |77 w
08 BS |18 CAN|28 ( |38 8 |48 H |58 X |68 h |78 x
09 HT |19 EM |29 ) |39 9 |49 | |5 Y |69 i |79 vy
OALF |1ASUB|2A * |[3A : |[4A J |BA Z |6A | |7A z
OBVT |IBESC|2B + |3B ; |4B K |56B [ |6B k |[7B {
OCFF |1ICFS |2C ~ |3C < |4C L |5C \ |eC | |7C |
ODCR |IDGS |2D - 3D = |4D M |5D ] 6D m | 7D }
OESO |[1IERS |2 . |[3E > |4E N |5E ™~ |6E n |7E ~
OF Sl IFUS |2F [/ |3F ? |4F O |5F _ |6F o |7F DEL
NUL  Null FF  Formfeed CAN Cancel

SOH Start of heading CR Carriagereturn EM  End of medium
STX Start of text SO  Shift out SUB Substitute
ETX End of text Sl Shiftin ESC Escape

EOT End of transmission DLE Datalink escape FS Fileseparator
ENQ Enquiry DC1 Device control 1 GS  Group separator
ACK Acknowledge DC2 Devicecontrol 2 RS  Record separator
BEL Bedll DC3 Device control 3 US  Unit separator
BS Backspace DC4 Device control 4 SP  Space

HT  Horizontal tab NAK Negative acknowledge DEL Delete

LF Linefeed SYN Synchronousidle

VT Vertica tab ETB End of transmission block

Figure 2-13  The ASCII character code, shown with hexadecimal indices.

character consists of 7 bits, and all 27 possible bit patterns represent valid charac-
ters. The characters in positions 00 — 1F and position 7F are special control char-
acters that are used for transmission, printing control, and other non-textual
purposes. The remaining characters are all printable, and include letters, num-
bers, punctuation, and a space. The digits 0-9 appear in sequence, as do the
upper and lower case letters™. This organization simplifies character manipula-
tion. In order to change the character representation of a digit into its numerical
value, we can subtract (30),¢ from it. In order to convert the ASCII character ‘5,’
which is in position (35)4g, into the number 5, we compute (35 — 30 = 5)4¢. In
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order to convert an upper case letter into a lower case letter, we add (20),4. For
example, to convert the letter ‘H,” which is at location (48),¢ in the ASCII table,
into the letter *h,” which is at position (68),4, Wwe compute (48 + 20 = 68)4g.

THE EBCDIC CHARACTER SET

A problem with the ASCII code is that only 128 characters can be represented,
which is a limitation for many keyboards that have a lot of special characters in
addition to upper and lower case letters. The Extended Binary Coded Decimal
Interchange Code (EBCDIC) is an eight-bit code that is used extensively in IBM
mainframe computers. Since seven-bit ASCII characters are frequently repre-
sented in an eight-bit modified form (one character per byte), in whichaOora 1
is appended to the left of the seven-bit pattern, the use of EBCDIC does not
place a greater demand on the storage of characters in a computer. For serial
transmission, however, (see Chapter 8), an eight-bit code takes more time to
transmit than a seven-bit code, and for this case the wider code does make a dif-
ference.

The EBCDIC code is summarized in Figure 2-14. There are gaps in the table,
which can be used for application specific characters. The fact that there are gaps
in the upper and lower case sequences is not a major disadvantage because char-
acter manipulations can still be done as for ASCII, but using different offsets.

THE UNICODE CHARACTER SET

The ASCII and EBCDIC codes support the historically dominant (Latin) char-
acter sets used in computers. There are many more character sets in the world,
and a simple ASCII-to-language-X mapping does not work for the general case,
and so a new universal character standard was developed that supports a great
breadth of the world’s character sets, called Unicode.

Unicode is an evolving standard. It changes as new character sets are introduced
into it, and as existing character sets evolve and their representations are refined.

1. As an aside, the character ‘@ and the character ‘A’ are different, and have different codes
in the ASCII table. The small letters like ‘a" are called lower case, and the capital letters like ‘A’ are
called upper case. The naming comes from the positions of the characters in a printer’s typecase.
The capital letters appear above the small letters, which resulted in the upper case / lower case nam-
ing. These days, typesetting is almost always performed electronically, but the traditional naming is
still used.
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00 NUL |20 DS |40 SP |60 - |80 AO Co { EO \
01 SOH |21 SOS |41 61 / 8l a |A1l ~ |[C1 A |E1

02 STX |22 FS |42 62 82 b |A2 s |C2 B |E2 S
03 ETX | 23 43 63 8 ¢ |A3 t |C3 C |E3 T
04 PF 24 BYP | 44 64 84 d |A4 u |[C4 D |E4 U
05 HT |25 LF |45 65 8 e |A5 v |C5 E |E5 V
06 LC |26 ETB | 46 66 86 f A6 w |C6 F |E6 W
07 DEL | 27 ESC | 47 67 8 g |A7 x |C7 G |E7 X
08 28 48 68 8 h |A8 y |[C8B H |E8 Y
09 29 49 69 89 i A9 z |C9 | E9 Z
OA SMM|2A SM |4A ¢ |6A 8A AA CA EA

OB VT |2B CU2 |4B 6B 8B AB CB EB

0C FF 2C 4C < |6C % |8C AC CC EC

OD CR |2D ENQ|4D ( 6D _ | 8D AD CD ED

OE SO 2E ACK |4E + 6E > 8E AE CE EE

OF S 2F BEL |4F | 6F 2 8F AF CF EF

10 DLE | 30 50 & |70 90 BO DO } FO O
11 DC1 | 31 51 71 91 | B1 D1 J |F1 1
12 DC2 | 32 SYN |52 72 92 k |B2 D2 K |F2 2
13 TM |33 53 73 93 | B3 D3 L |F3 3
14 RES | 34 PN 54 74 94 m |B4 D4 M F4 4
15 NL |35 RS |55 75 9% n |B5 D5 N |F5 b5
16 BS |36 UC |56 76 9% o |B6 D6 O |F6 6
17 IL 37 EOT | 57 77 97 p |B7 D7 P |F7 7
18 CAN| 38 58 78 98 q |B8 D8 Q |F8 8
19 EM | 39 59 79 9 r B9 D9 R |F9 9
1A CC | 3A 5A ! TA 9A BA DA FA |
1IBCUl1|3BCU3|5B $ |7B # |9B BB DB FB
ICIFS |3C DC4 |5C - 7C @ |9C BC DC FC

1D IGS | 3D NAK|5D ) 7D 9D BD DD FD

1E IRS | 3E 5E ; 7E = |9E BE DE FE

1F IUS | 3F SUB | 5F = = " oF BF DF FF
STX Start of text RS Reader Stop DC1 DeviceControl 1 BEL Beéll
DLE Datalink Escape PF Punch Off DC2 DeviceControl 2 SP Sé)ace
BS Backspace DS Digit Select DC4 DeviceControl 4 IL Idle
ACK Acknowledge PN Punch On CU1 Customer Usel NUL Null
SOH Start of Heading SM  Set Mode CU2 Customer Use 2

ENQ Enquiry LC Lower Case CU3 Customer Use 3

ESC Escape CC Cursor Control  SYN  Synchronous Idle

BYP Bypass CR Carriage Return |IFS Interchange File Separator
CAN Cancel EM Endof Medium EOT End of Transmission

RES Restore FF Form Feed ETB End of Transmission Block
Sl Shift In TM Tape Mark NAK Negative Acknowledge

SO  Shift Out UC Upper Case SMM Start of Manual Message
DEL Delete FS Field Separator SOS Start of Significance

SUB Substitute HT Horizontal Tab IGS Interchange Group Separator
NL New Line VT Vertica Tab IRS Interchange Record Separator
LF  LineFeed UC Upper Case IUS Interchange Unit Separator

Figure 2-14 The EBCDIC character code, shown with hexadecimal indices.
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In version 2.0 of the Unicode standard, there are 38,885 distinct coded charac-
ters that cover the principal written languages of the Americas, Europe, the Mid-
dle East, Africa, India, Asia, and Pacifica.

The Unicode Standard uses a 16-bit code set in which there is a one-to-one cor-
respondence between 16-bit codes and characters. Like ASCII, there are no com-
plex modes or escape codes. While Unicode supports many more characters than
ASCII or EBCDIC, it is not the end-all standard. In fact, the 16-bit Unicode
standard is a subset of the 32-bit ISO 10646 Universal Character Set (UCS-4).

Glyphs for the first 256 Unicode characters are shown in Figure 2-15, according
to Unicode version 2.1. Note that the first 128 characters are the same as for
ASCII.

m SUMMARY

m Further Reading

(Hamacher et al., 1990) provides a good explanation of biased error in floating
point representations. The IEEE 754 floating point standard is described in
(IEEE, 1985). The analysis of range, error, and precision in Section 2.3 was
influenced by (Forsythe, 1970). The GAO report (U.S. GAO report
GAO/IMTEC-92-26) gives a very readable account of the software problem that
led to the Patriot failure in Dhahran. See http://www.unicode.org for informa-
tion on the Unicode standard.
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0000 NUL [ 0020 SP | 0040 @ | 0060 0080 Ctrl | 0DAO NBS|00CO A |O00EO a
0001 SOH |0021 ! |0041 A |0061 a |008L Ctrl | 00AL 00C1 A |O00E1 &
0002 STX [0022 " |0042 B |0062 b |0082 Ctrl [00A2 ¢ |00C2 A |OOE2 a
0003 ETX | 0023 # |0043 C |0063 c |0083 Ctrl |00OA3 £ |00C3 A |O0OE3 &
0004 EOT (0024 $ |0044 D |0064 d |0084 Ctrl |00A4 © |00C4 A |00E4 &
0005 ENQ|[0025 % |0045 E |0065 e |0085 Ctrl [00A5 ¥ |00C5 A |O0E5 &
0006 ACK | 0026 & |0046 F |0066 f |0086 Ctrl |00A6 T |00C6 A& |O00E6 e
0007 BEL |0027 ' |0047 G |0067 g |0087 Ctrl |0OA7 8§ |00C7 C |OOE7 ¢
0008 BS |[0028 ( |0048 H |0068 h |0088 Ctrl |0OOA8 ~ |00C8 E |OOE8 &
0009 HT |0029 ) |0049 | 0069 i 0089 Ctrl [00A9 © |00C9 E |O0E9 é
000A LF | 002A * |004A J | 006A | 008A Ctrl | 0OOAA 2 |O00CA E |OOEA &
000B VT |002B + |004B K |006B k |008B Ctrl |0OAB « |00CB E |OOEB &
OOOC FF |002C ~ |o004C L |o06C | 008C Ctrl [ 0OAC - |[00CC 1| 00EC i
O0OODCR |002D - |004D M |006D m |008D Ctrl |0OAD — |00CD | |OOED i
O000E SO |002E . |O004E N |OO6E n |OO8E Ctrl |[0OAE ® |O00CE 1 |OOEE 1
000F S 002F / |004F O |O006F o |OO8F Ctrl | 0OAF — |OOCF 1 |OOEF i
0010 DLE |0030 O |0050 P |0070 p |0090 Ctrl |00OBO ° 00DO D | 00FO ¢
0011 DC1 (0031 1 |0051 Q |0071 g |0091 Ctrl [OOB1 + |00D1 N |OOF1L n
0012 DC2 0032 2 |0052 R |0072 r |0092 Ctrl |00B2 -2 00D2 O |00F2 o
0013 DC3 0033 3 |0053 S |0073 s |0093 Ctrl |00B3 3 00D3 O |00F3 6
0014 DC4 |0034 4 |0054 T |0074 t |0094 Ctrl |00B4 ooD4 O |00F4 6
0015 NAK|0035 5 |[0055 U [0075 u |0095 Ctrl [0OB5 u |[00D5 O |O0OF5 &
0016 SYN|0036 6 |0056 V |0076 v |009 Ctrl [00B6  |00D6 O |O00F6 o
0017 ETB | 0037 7 |0057 W |0077 w |0097 Ctrl |00B7 00D7 X | OOF7 =+
0018 CAN|0038 8 | 0058 X |0078 x |0098 Ctrl (0OOB8 , |00D8 @ |OOF8 @
0019 EM |(0039 9 |0059 Y |0079 y |0099 Ctrl |00B9 ! 00D9 U |00F9 1
001A SUB |003A : |O005A Z |007A z |O09A Ctrl [OOBA ° |00DA U |OOFA U
001B ESC |003B ; |005B [ |007B ({ 009B Ctrl |[00BB » |00DB U |O0OFB 0
00ICFS |003C < |005C \ |o007C | 009C Ctrl [00BC /4 |00DC U |O0OFC U
00IDGS | 003D = |005D ] 007D } 009D Ctrl | 00BD /2 |00DD Y | O0OFD P
00lIE RS |003E > |O005E "~ |O0O7E ~ |OO9E Ctrl | OOBE 3/4 |[OODE y |OOFE p
001F US | 003F ? |O005F _ | 007F DEL | O09F Ctrl | OOBF ¢ | OODF g |OOFF Y
NUL  Null SOH Start of heading CAN Cancel SP  Space
STX Start of text EOT End of transmission EM Endof medium DEL Delete
ETX End of text DC1 Device control 1 SUB Substitute Ctrl  Control
ENQ Enquiry DC2 Device control 2 ESC Escape FF  Formfeed
ACK Acknowledge DC3 Devicecontrol 3 FS Fileseparator CR Carriagereturn
BEL Bell DC4 Device control 4 GS Group separator SO Shift out
BS Backspace NAK Negative acknowledge RS  Record separator Sl Shiftin
HT Horizontal tab NBS Non-breaking space US  Unit separator DLE Datalink escape
LF Linefeed ETB End of transmission block SYN Synchronousidle VT  Vertica tab

Figure 2-15 The first 256 glyphs in Unicode, shown with hexadecimal indices.



58 CHAPTER 2 DATA REPRESENTATION

m PROBLEMS

Given a signed, fixed point representation in base 10, with three digits to
the left and right of the decimal point:

a) What is the range? (Calculate the highest positive number and the lowest
negative number.)

b) What is the precision? (Calculate the difference between two adjacent num-
bers on a number line.)

Convert the following numbers as indicated, using as few digits in the
results as necessary.

a) (47)10 to unsigned binary.

b) (-27),¢ to binary signed magnitude.
C) (213)4¢ to base 10.

d) (10110.101), to base 10.

e) (34.625) to base 4.

Convert the following numbers as indicated, using as few digits in the
results as necessary.

a) (011011), to base 10.
b) (—27),¢ to excess 32 in binary.
¢) (011011), to base 16.
d) (55.875)¢ to unsigned binary.
e) (132.2), to base 16.

Convert .2015 to decimal.

Convert (43.3); to base 8 using no more than one octal digit to the right
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of the radix point. Truncate any remainder by chopping excess digits. Use an
ordinary unsigned octal representation.

Represent (17.5)4¢ in base 3, then convert the result back to base 10. Use
two digits of precision to the right of the radix point for the intermediate base
3 form.

Find the decimal equivalent of the four-bit two’s complement number:
1000.

Find the decimal equivalent of the four-bit one’s complement number:
1111,

Show the representation for (305), using three BCD digits.

Show the 10’s complement representation for (=305),( using three BCD
digits.

For a given number of bits, are there more representable integers in one’s
complement, two's complement, or are they the same?

Complete the following table for the 5-bit representations (including the
sign bits) indicated below. Show your answers as signed base 10 integers.

5-hit signed magnitude 5-hit excess 16

Largest number
Most negative number
No. of distinct numbers

Complete the following table using base 2 scientific notation and an
eight-bit floating point representation in which there is a three-bit exponent
in excess 3 notation (not excess 4), and a four-bit normalized fraction with a
hidden ‘1. In this representation, the hidden 1 is to the left of the radix point.
This means that the number 1.0101 is in normalized form, whereas .101 is
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not.
Base 2 scientific notation Floating point representation
Sign Exponent  Fraction
-1.0101 x 2-2
+1.1x22
001 0000
1 110 1111

The IBM short floating point representation uses base 16, one sign bit, a
seven-bit excess 64 exponent and a normalized 24-bit fraction.

a) What number is represented by the bit pattern shown below?
10111111 01110000 00000000 00000000

Show your answer in decimal. Note: the spaces are included in the number for
readability only.

b) Represent (14.3)¢ in this notation.

For a normalized floating point representation, keeping everything else
the same but:

a) decreasing the base will increase / decrease / not change the number of rep-
resentable numbers.

b) increasing the number of significant digits will increase / decrease / not
change the smallest representable positive number.

¢) increasing the number of bits in the exponent will increase / decrease / not
change the range.

d) changing the representation of the exponent from excess 64 to two’s com-
plement will increase / decrease / not change the range.

For parts (a) through (e), use a floating point representation with a sign
bit in the leftmost position, followed by a two-bit two’s complement expo-
nent, followed by a normalized three-bit fraction in base 2. Zero is represented
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by the bit pattern: 0 0 0 0 0 0. There is no hidden ‘1’.
a) What decimal number is represented by the bit pattern: 10010 0?

b) Keeping everything else the same but changing the base to 4 will: increase /
decrease / not change the smallest representable positive number.

¢) What is the smallest gap between successive numbers?
d) What is the largest gap between successive numbers?

e) There are a total of six bits in this floating point representation, and there
are 25 =64 unique bit patterns. How many of these bit patterns are valid?

Represent (107.15),¢ in a floating point representation with a sign bit, a
seven-bit excess 64 exponent, and a normalized 24-bit fraction in base 2.
There is no hidden 1. Truncate the fraction by chopping bits as necessary.

For the following single precision IEEE 754 bit patterns show the numer-
ical value as a base 2 significand with an exponent (e.g. 1.11 x 2).

a) 0 10000011 01100000000000000000000
b) 1 10000000 00000000000000000000000
¢) 1 00000000 00000000000000000000000
d) 111111111 00000000000000000000000
e) 011111111 11010000000000000000000
f) 0 00000001 10010000000000000000000
g) 0 00000011 01101000000000000000000
Show the IEEE 754 bit patterns for the following numbers:

a) +1.1011 x 2° (single precision)

61
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b) +0 (single precision)
¢) —=1.00111 x 271 (double precision)
d) —NaN (single precision)

Using the IEEE 754 single precision format, show the value (not the bit
pattern) of:

a) The largest positive representable number (note: oo is not a number).
b) The smallest positive nonzero number that is normalized.

¢) The smallest positive nonzero number in denormalized format.

d) The smallest normalized gap.

e) The largest normalized gap.

f) The number of normalized representable numbers (including 0; note that
oo and NaN are not numbers).

Two programmers write random number generators for normalized float-
ing point numbers using the same method. Programmer A's generator creates
random numbers on the closed interval from 0 to 1/2, and programmer B’s
generator creates random numbers on the closed interval from 1/2 to 1. Pro-
grammer B’s generator works correctly, but Programmer A’s generator pro-
duces a skewed distribution of numbers. What could be the problem with
Programmer As approach?

A hidden 1 representation will not work for base 16. Why not?

With a hidden 1 representation, can 0 be represented if all possible bit
patterns in the exponent and fraction fields are used for nonzero numbers?

Given a base 10 floating point number (e.g. .583 x 103), can the number
be converted into the equivalent base 2 form: .x x 2Y by separately converting
the fraction (.583) and the exponent (3) into base 2?



