"u_ "
=

421

APPENDIX A: DIGITAL
LOGIC

In this appendix, we take a look at a few basic principles of digital logic that we
can apply in the design of a digital computer. We start by studying combina-
tional logic in which logical decisions are made based only on combinations of
the inputs. We then look at sequential logic in which decisions are made based
on combinations of the current inputs as well as the past history of inputs. With
an understanding of these underlying principles, we can design digital logic cir-
cuits from which an entire computer can be constructed. We begin with the fun-
damental building block of a digital computer, the combinational logic unit
(CLU).

A combinational logic unit translates a set of inputs into a set of outputs accord-
ing to one or more mapping functions. The outputs of a CLU are strictly func-
tions of the inputs, and the outputs are updated immediately after the inputs
change. A basic model of a CLU is shown in Figure A-1. A set of inputs ig — iy, is

lp —> —> fo(io 11)

i1 —> Combinational [—> fi(i1 i3 14)
logic unit

in > —>> fm(i9’ in)

Figure A-1 External view of a combinational logic unit.

presented to the CLU, which produces a set of outputs according to mapping
functions fy — f,,. There is no feedback from the outputs back to the inputs in a
combinational logic circuit (we will study circuits with feedback in Section

422

A11)

Inputs and outputs for a CLU normally have two distinct values: high and low.
When signals (values) are taken from a finite set, the circuits that use them are
referred to as being digital. A digital electronic circuit receives inputs and pro-
duces outputs in which 0 volts (0 V) is typically considered to be a low value and
+5 V is considered to be a high value. This convention is not used everywhere:
high speed circuits tend to use lower voltages; some computer circuits work in
the analog domain, in which a continuum of values is allowed; and digital opti-
cal circuits might use phase or polarization in which high or low values are no
longer meaningful. An application in which analog circuitry is appropriate is in
flight simulation, since the analog circuits more closely approximate the mechan-
ics of an aircraft than do digital circuits.

Although the vast majority of digital computers are binary, multi-valued circuits
also exist. A wire that is capable of carrying more than two values can be more
efficient at transmitting information than a wire that carries only two values. A
digital multi-valued circuit is different from an analog circuit in that a multi-val-
ued circuit deals with signals that take on one of a finite number of values,
whereas an analog signal can take on a continuum of values. The use of
multi-valued circuits is theoretically valuable, but in practice it is difficult to cre-
ate reliable circuitry that distinguishes between more than two values. For this
reason, multi-valued logic is currently in limited use

In this text, we are primarily concerned with digital binary circuits, in which
exactly two values are allowed for any input or output. Thus, we will consider
only binary signals.

In 1854 George Boole published his seminal work on an algebra for representing
logic. Boole was interested in capturing the mathematics of thought, and devel-
oped a representation for factual information such as “The door is open.” or
“The door is not open.” Boole’s algebra was further developed by Shannon into
the form we use today. In Boolean algebra, we assume the existence of a basic
postulate, that a binary variable takes on a single value of 0 or 1. This value cor-
responds to the 0 and +5 voltages mentioned in the previous section. The assign-
ment can also be done in reverse order for 1 and 0, respectively. For purposes of
understanding the behavior of digital circuits, we can abstract away the physical
correspondence to voltages and consider only the symbolic values 0 and 1.

A key contribution of Boole is the development of the truth table, which cap-
tures logical relationships in a tabular form. Consider a room with two 3-way
switches A and B that control a light Z. Either switch can be up or down, or both
switches can be up or down. When exactly one switch is up, the light is on.
When both switches are up or down, the light is off. A truth table can be con-
structed that enumerates all possible settings of the switches as shown in Figure

Inputs Output

GND
A B 4
“Hot”
0 O 0
0 1 1
1 0 1
11 0

Figure A-2 A truth table relates the states of 3-way switches A and B to light Z.

A-2. In the table, a switch is assigned the value O if it is down, otherwise it is
assigned the value 1. The light is on when Z = 1.

In a truth table, all possible input combinations of binary variables are enumer-
ated and a corresponding output value of 0 or 1 is assigned for each input combi-
nation. For the truth table shown in Figure A-2, the output function Z depends
upon input variables A and B. For each combination of input variables there are
two values that can be assigned to Z: 0 or 1. We can choose a different assign-
ment for Figure A-2, in which the light is on only when both switches are up or
both switches are down, in which case the truth table shown in Figure A-3 enu-

Inputs Output

A B 4
0 0 1
0 1 0
10 0
11 1

Figure A-3 Alternate assignments of outputs to switch settings.

merates all possible states of the light for each switch setting. The wiring pattern
would also need to be changed to correspond. For two input variables, there are
22 = 4 input combinations, and 2 = 16 possible assignments of outputs to input

423

424

combinations. In general, since there are 2" input combinations for n inputs,
there are 27 possible assignments of output values to input combinations.

If we enumerate all possible assignments of switch settings for two input vari-
ables, then we will obtain the 16 assignments shown in Figure A-4. We refer to

Inputs Outputs

A B Fass AAD AB A AB B XOR OR

0 O 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1
Inputs Outputs

A B NOR XNOR B A+B A A+B NAND True

O O
O +» O

1
0
1
0

B Rk O P
s

1
1
1
0

B O Rk e

1
1
0
0

o O O -
= O O P

Figure A-4 Truth tables showing all possible functions of two binary variables.

these functions as Boolean logic functions. A number of assignments have spe-
cial names. The AND function is true (produces a 1) only when A and B are 1,
whereas the OR function is true when either A or B is 1, or when both A and B
are 1. A function is false when its output is 0, and so the False function is always
0, whereas the True function is always 1. The plus signs ‘+’ in the Boolean expres-
sions denote logical OR, and do not imply arithmetic addition. The juxtaposi-
tion of two variables, as in AB, denotes logical AND among the variables.

The A and B functions simply repeat the A and B inputs, respectively, whereas
the A and B functions complement A and B, by producing a 0 where the
uncomplemented function is a 1 and by producing a 1 where the uncomple-
mented function is a 0. In general, a bar over a term denotes the complement
operation, and so the NAND and NOR functions are complements to AND and
OR, respectively. The XOR function is true when either of its inputs, but not

425

both, is true. The XNOR function is the complement to XOR. The remaining
functions are interpreted similarly.

A logic gate is a physical device that implements a simple Boolean function. The
functions that are listed in Figure A-4 have representations as logic gate symbols,
a few of which are shown in Figure A-5 and Figure A-6. For each of the func-

= o ol>
= o R o|lm
= O o ofm
R P o o>
O r Olw
A aa=1k

AND OR
A|F A|F
ofo 0|1
1|1 110
A 4| >— F=A A 4| So— F=A
Buffer NOT (Inverter)

Figure A-5 Logic gate symbols for AND, OR, buffer, and NOT Boolean functions.

tions, A and B are binary inputs and F is the output.

In Figure A-5, the AND and OR gates behave as previously described. The out-
put of the AND gate is true when both of its inputs are true, and is false other-
wise. The output of the OR gate is true when either or both of its inputs are true,
and is false otherwise. The buffer simply copies its input to its output. Although
the buffer has no logical significance, it serves an important practical role as an
amplifier, allowing a number of logic gates to be driven by a single signal. The
NOT gate (also called an inverter) produces a 1 at its output for a 0 at its input,
and produces a 0 at its output for a 1 at its input. Again, the inverted output sig-
nal is referred to as the complement of the input. The circle at the output of the

426

N =R=15"
O R Oo|lw
O Fr - R(m
S N=N=15
R O, Ol
o oo r|m

>
Q
-

n
3
w

W >
M

n
>

+
w

B —|
NAND NOR
ABJ|F ABJ|F
00| O 0 0|1
0 1(1 01]0
1 0|1 100
1 1|0 1 1)1

A F=AOB A F=AOB
B - B -

Exclusive-OR (XOR) Exclusive-NOR (XNOR)

Figure A-6 Logic gate symbols for NAND, NOR, XOR, and XNOR Boolean functions.

NOT gate denotes the complement operation.

In Figure A-6, the NAND and NOR gates produce complementary outputs to
the AND and OR gates, respectively. The exclusive-OR (XOR) gate produces a 1
when either of its inputs, but not both, is 1. In general, XOR produces a 1 at its
output whenever the number of 1’s at its inputs is odd. This generalization is
important in understanding how an XOR gate with more than two inputs
behaves. The exclusive-NOR (XNOR) gate produces a complementary output
to the XOR gate.

The logic symbols shown in Figure A-5 and Figure A-6 are only the basic forms,
and there are a number of variations that are often used. For example, there can
be more inputs, as for the three-input AND gate shown in Figure Figure A-7a.
The circles at the outputs of the NOT, NOR, and XNOR gates denote the com-
plement operation, and can be placed at the inputs of logic gates to indicate that

A] A _
C— B

@ (b)

(©
Figure A-7 Variations of the basic logic gate symbols for (a) three inputs; (b) a negated output; and
(c) complementary outputs.
the inputs are inverted upon entering the gate, as shown in Figure A-7b.
Depending on the technology used, some logic gates produce complementary
outputs. The corresponding logic symbol for a complementary logic gate indi-
cates both outputs as illustrated in Figure A-7c.

Physically, logic gates are not magical, although it may seem that they are when a
device like an inverter can produce a logical 1 (+5 V) at its output when a logical
0 (0 V) is provided at the input. The next section covers the underlying mecha-
nism that makes electronic logic gates work.

ELECTRONIC IMPLEMENTATION OF LOGIC GATES
Electrically, logic gates have power terminals that are not normally shown. Figure

OUTPUT VOLTAGE vs. INPUT VOLTAGE
4.0
[T

35 Vee=5V
\V; cc
R_ =400 Q

w
S}

N
@

Vee=+5V R
VOU[v

Output Voltage-V

in

Collector
L Emitter \
GND =0V

0
— — 0020406081 121416182

>-|?-
>
i
b
0—-Ou
ok B N
|

V—-Input Voltage-V

(a@ (b) (©) (d)
Figure A-8 (a) Power terminals for an inverter made visible; (b) schematic symbol for a tran-

sistor; (c) transistor circuit for an inverter; (d) static transfer function for an inverter.

A-8a illustrates an inverter in which the +5 V and 0 V (GND) terminals are
made visible. The +5 V signal is commonly referred to as V¢ for “voltage collec-
tor-collector.” In a physical circuit, all of the V¢ and GND terminals are con-

427

428

nected to the corresponding terminals of a power supply.

Logic gates are composed of electrical devices called transistors, which have a
fundamental switching property that allows them to control a strong electrical
signal with a weak signal. This supports the process of amplification, which is
crucial for cascading logic gates. Without amplification, we would only be able
to send a signal through a few logic gates before the signal deteriorates to the
point that it is overcome by noise, which exists at every point in an electrical cir-
cuit to some degree.

The schematic symbol for a transistor is shown in Figure A-8b. When there is no
positive voltage on the base, then a current will not flow from V¢ to GND.
Thus, for an inverter, a logical 0 (0 V) on the base will produce a logical 1 (+5 V)
at the collector terminal as illustrated in Figure A-8c. If, however, a positive volt-
age is applied to Vj,, then a current will flow from V- to GND, which prevents
Vout from producing enough signal for the inverter output to be a logical 1. In
effect, when +5 V is applied to Vi, a logical 0 appears at V. The input-output
relationship of a logic gate follows a nonlinear curve as shown in Figure A-8d for
transistor-transistor logic (TTL). The nonlinearity is an important gain property
that makes cascadable operation possible.

A useful paradigm is to think of current flowing through wires as water flowing
through pipes. If we open a connection on a pipe from V¢ to GND, then the
water flowing to V,,; will be reduced to a great extent, although some water will
still make it out. By choosing an appropriate value for the resistor R, the flow
can be restricted in order to minimize this effect.

Since there will always be some current that flows even when we have a logical 0
at Vo, We need to assign logical 0 and 1 to voltages using safe margins. If we
assign logical 0 to 0 V and logical 1 to +5 V, then our circuits may not work
properly if .1V appears at the output of an inverter instead of 0 V, which can
happen in practice. For this reason, we design circuits in which assignments of
logical 0 and 1 are made using thresholds. In Figure A-9a, logical O is assigned to
the voltage range [0 V to 0.4 V] and logical 1 is assigned to the voltage range [2.4
V to +5 V]. The ranges shown in Figure A-9a are for the output of a logic gate.
There may be some attenuation (a reduction in voltage) introduced in the con-
nection between the output of one logic gate and the input to another, and for
that reason, the thresholds are relaxed by 0.4 V at the input to a logic gate as
shown in Figure A-9b. These ranges can differ depending on the logic family.
The output ranges only make sense, however, if the gate inputs settle into the

+5V +5V
Logical 1 Logical 1
24V 20V
Forbidden Range’] Forbidden Range’}
0.8V
04V — Logica 0
ov Logical 0 ov
€Y (b)

Figure A-9 Assignments of logical 0 and 1 to voltage ranges (a) at the output of a logic gates, and
(b) at the input to a logic gate.

logical 0 or 1 ranges at the input. For this reason, inputs to a logic gate should
never be left “floating” — disconnected from a gate output, V¢, or GND.

Figure A-10 shows transistor circuits for two-input NAND and NOR gates. For

Vee
Vee
VOUT —_—
Vi
A
Voul
A+B
Vs Vi \Z
B A B
@ (b)

Figure A-10 Transistor circuits for (a) a two-input NAND gate and (b) a two-input NOR gate.

the NAND case, both of the V; and V, inputs must be in the logical 1 region in
order to produce a voltage in the logical O region at V. For the NOR case, if
either or both of the V4 and V, inputs are in the logical 1 region, then a voltage
in the logical O region will be produced at V.

429

430

TRI-STATE BUFFERS

A tri-state buffer behaves in a similar manner to the ordinary buffer that was
introduced earlier in this appendix, except that a control input is available to dis-
able the buffer. Depending on the value of the control input, the output is either
0, 1, or disabled, thus providing three output states. In Figure A-11, when the

P o ol0
P O Pr oOl>
P, O & |m
P P, O o0
~ O r Ol>
|8 8 P Oolm

A— >—F=AC A— r>—|::AE
C or C or
F=o F=90

Tri-state buffer Tri-state buffer, inverted control

Figure A-11 Tri-state buffers.

control input C is 1, the tri-state buffer behaves like an ordinary buffer. When C
is 0, then the output is electrically disconnected and no output is produced. The
@s in the corresponding truth table entries mark the disabled (disconnected)
states. The reader should note that the disabled state, ¢, represents neither a 0
nor a 1, but rather the absence of a signal. In electrical circuit terms, the output is
said to be in high impedance. The inverted control tri-state buffer is similar to
the tri-state buffer, except that the control input C is complemented as indicated
by the bubble at the control input.

An electrically disconnected output is different than an output that produces a 0,
in that an electrically disconnected output behaves as if no output connection
exists whereas a logical 0 at the output is still electrically connected to the circuit.
The tri-state buffer allows the outputs from a number of logic gates to drive a
common line without risking electrical shorts, provided that only one buffer is
enabled at a time. The use of tri-state buffers is important in implementing reg-
isters, which are described later in this appendix.

Table A.1 summarizes a few basic properties of Boolean algebra that can be
applied to Boolean logic expressions. The postulates (known as “Huntington’s

Relationship Dual Property
9 AB = BA A+B =B+A Commutative
g A(B+C) = AB+AC | A+BC = (A+B) (A+C) | Distributive
§ 1A=A 0+A=A Identity
AA =0 A+A=1 Complement
0A=0 1+A=1 Zero and one theorems
AA =A A+A = A Idempotence
.| ABC) = (AB)C A+ (B+C) = (A+B)+C | Associative
§ A=A Involution
g AB= A+B A+B= AB DeMorgan's Theorem
AB+ FC + BC (A+B)(A+C)(B+C) Consensus Theorem
= AB+AC = (A+B)(A+C)
AA+B) = A A+AB = A Absorption Theorem

Table A.1 Basic properties of Boolean algebra.

postulates”) are basic axioms of Boolean algebra and therefore need no proofs.
The theorems can be proven from the postulates. Each relationship shown in the
table has both an AND and an OR form as a result of the principle of duality.
The dual form is obtained by changing ANDs to ORs, and changing ORs to
AND:s.

The commutative property states that the order that two variables appear in an
AND or OR function is not significant. By the principle of duality, the commu-
tative property has an AND form (AB = BA) and an OR form (A + B =B + A).
The distributive property shows how a variable is distributed over an expression
with which it is ANDed. By the principle of duality, the dual form of the distrib-
utive property is obtained as shown.

The identity property states that a variable that is ANDed with 1 or is ORed
with 0 produces the original variable. The complement property states that a
variable that is ANDed with its complement is logically false (produces a 0, since
at least one input is 0), and a variable that is ORed with its complement is logi-
cally true (produces a 1, since at least one input is 1).

The zero and one theorems state that a variable that is ANDed with O produces
a0, and a variable that is ORed with 1 produces a 1. The idempotence theorem

431

432

states that a variable that is ANDed or ORed with itself produces the original
variable. For instance, if the inputs to an AND gate have the same value or the
inputs to an OR gate have the same value, then the output for each gate is the
same as the input. The associative theorem states that the order of ANDing or
ORIing is logically of no consequence. The involution theorem states that the
complement of a complement leaves the original variable (or expression)
unchanged.

DeMorgan’s theorem, the consensus theorem, and the absorption theorem
may not be obvious, and so we prove DeMorgan’s theorem for the two-variable
case using perfect induction (enumerating all cases), and leave the proofs of the
consensus theorem and the absorption theorem as exercises (see problems A.24
and A.25.) Figure A-12 shows a truth table for each expression that appears in

AB | ABTA+B | A+B = AB
00 1 1 1 1
01 1 1 0 0
10 1 1 0 0
11 0 0 0 0

Figure A-12 DeMorgan’s theorem is proven for the two-variable case.

either form of DeMorgan’s theorem. The expressions that appear on the left and
right sides of each form of DeMorgan’s theorem produce equivalent outputs,
which proves the theorem for two variables.

Not all of the logic gates discussed so far are necessary in order to achieve com-
putational completeness, meaning that any digital logic circuit can be created
from these gates. Three sets of logic gates that are computationally complete are:
{AND, OR, NOT}, {NANDY}, and {NOR} (there are others as well).

As an example of how a computationally complete set of logic gates can imple-
ment other logic gates that are not part of the set, consider implementing the OR
function with the {NAND} set. DeMorgan’s theorem can be used to map an OR
gate onto a NAND gate, as shown in Figure A-13. The original OR function (A
+ B) is complemented twice, which leaves the function unchanged by the involu-
tion property. DeMorgan’s theorem then changes OR to AND, and distributes
the innermost overbar over the terms A and B. The inverted inputs can also be
implemented with NAND gates by the property of idempotence, as shown in
Figure A-14. The OR function is thus implemented with NANDs. Functional

433

DeMorgan'stheorem: A+B = A+B = AB

A F=A+B — AT F=AB
B - — B—(~AB

Figure A-13 DeMorgan’s theorem is used in mapping an OR gate onto a NAND gate.

A T
B—O}A+B — }A+B
silDan

Figure A-14 Inverted inputs to a NAND gate implemented with NAND gates.

equivalence among logic gates is important for practical considerations, because
one type of logic gate may have better operating characteristics than another for a
given technology.

Suppose now that we need to implement a more complex function than just a
simple logic gate, such as the three-input majority function described by the
truth table shown in Figure A-15. The majority function is true whenever more

Minteem| A B C F
Index
0] 00O 0
1] 00 1 0
21 010 0
3101 1 1
411 0 0 0
51 10 1 1
6l 11 o 1 A_balancetipstotheleftor
2111 1 1 right depending on whether
therearemoreO’'sor 1's.

Figure A-15 Truth table for the majority function.

than half of its inputs are true, and can be thought of as a balance that tips to the
left or right depending on whether there are more 0’ or 1’ at the input. This is a
common operation used in fault recovery, in which the outputs of identical cir-
cuits operating on the same data are compared, and the greatest number of simi-
lar values determine the output (also referred to as “voting” or “odd one out”).

434

Since no single logic gate discussed up to this point implements the majority
function directly, we transform the function into a two-level AND-OR equation,
and then implement the function with an arrangement of logic gates from the set
{AND, OR, NOT} (for instance). The two levels come about because exactly
one level of ANDed variables is followed by exactly one OR level. The Boolean
equation that describes the majority function is true whenever F is true in the
truth table. Thus, F is true when A=0, B=1, and C=1, or when A=1, B=0, and
C=1, and so on for the remaining cases.

One way to represent logic equations is to use the sum-of-products (SOP)
form, in which a collection of ANDed variables are ORed together. The Boolean
logic equation that describes the majority function is shown in SOP form in
Equation A.1. Again, the ‘+’ signs denote logical OR and do not imply arith-
metic addition.

F = ABC+ ABC+ ABC + ABC (A1)

By inspecting the equation, we can determine that four three-input AND gates
will implement the four product terms ABC , ABC , ABC , and ABC , and
then the outputs of these four AND gates can be connected to the inputs of a
four-input OR gate as shown in Figure A-16. This circuit performs the majority

A B c
Ere
ABC

["\ ABC

L @F

R

|___/aBC

[N\ aBcC

L

Figure A-16 A two-level AND-OR circuit implements the majority function. Inverters at the inputs
are not included in the two-level count.

435

function, which we can verify by enumerating all eight input combinations and
observing the output for each case.

The circuit diagram shows a commonly used notation that indicates the presence
or absence of a connection, which is summarized in Figure A-17. Two lines that

| |
I |

Connection No connection

Connection No connection
Figure A-17 Four notations used at circuit intersections.

pass through each other do not connect unless a darkened circle is placed at the
intersection point. Two lines that meet in a T are connected as indicated by the
six highlighted intersections, and so darkened circles do not need to be placed
over those intersection points.

When a product term contains exactly one instance of every variable, either in
true or complemented form, it is called a minterm. A minterm has a value of 1
for exactly one of the entries in the truth table. That is, a minimum number of
terms (one) will make the function true. As an alternative, the function is some-
times written as the logical sum over the true entries. Equation A.1 can be rewrit-
ten as shown in Equation A.2, in which the indices correspond to the minterm
indices shown at the left in Figure A-15.

F = Z [B,5,6, 70 (A.2)

This notation is appropriate for the canonical form of a Boolean equation,
which contains only minterms. Equations A.1 and A.2 are both said to be in
“canonical sum-of-products form.”

As a dual to the sum-of-products form, a Boolean equation can be represented in
the product-of-sums (POS) form. An equation that is in POS form contains a
collection of ORed variables that are ANDed together. One method of obtaining
the POS form is to start with the complement of the SOP form, and then apply

436

DeMorgan’s theorem. For example, referring again to the truth table for the
majority function shown in Figure A-15, the complement is obtained by select-
ing input terms that produce 0s at the output, as shown in Equation A.3:

F = ABC+ABC+ ABC + ABC (A.3)

Complementing both sides yields equation A.4:

F = ABC+ABC+ ABC + ABC (A4)

Applying DeMorgan’s theorem in the form W+ X+Y+Z = WXYZ at the
outermost level produces equation A.5:

F = (ABC)(ABC)(ABC)(ABC) (A.5)

Applying DeMorgan’s theorem in the form WXYZ = W+X+Y+Z to the
parenthesized terms produces equation A.6:

F=(A+B+C)(A+B+C)(A+B+C)(A+B+C(C) (A.6)

Equation A.6 is in POS form, and contains four maxterms, in which every vari-
able appears exactly once in either true or complemented form. A maxterm, such
as (A+B+C) ,hasavalue of O for only one entry in the truth table. That is,
it is true for the maximum number of truth table entries without reducing to the
trivial function of always being true. An equation that consists of only maxterms
in POS form is said to be in “canonical product-of-sums form.” An OR-AND
circuit that implements Equation A.6 is shown in Figure A-18. The OR-AND
form is logically equivalent to the AND-OR form shown in Figure A-16.

One motivation for using the POS form over the SOP form is that it may result
in a smaller Boolean equation. A smaller Boolean equation may result in a sim-
pler circuit, although this does not always hold true since there are a number of
considerations that do not directly depend on the size of the Boolean equation,
such as the complexity of the wiring topology.

The gate count is a measure of circuit complexity that is obtained by counting
all of the logic gates. The gate input count is another measure of circuit com-
plexity that is obtained by counting the number of inputs to all of the logic gates.
For the circuits shown in Figure A-16 and Figure A-18, a gate count of eight and

A B c
L[L
YIVYIY
\ T\ A+B+C
;S
‘_\A+B+CI_
—~ [
A+B+ C
Y N\ A+B+C

Figure A-18 A two-level OR-AND circuit that implements the majority function. Inverters are not
included in the two-level count.
a gate input count of 19 are obtained for both the SOP and POS forms. For this
case, there is no difference in circuit complexity between the SOP and POS
forms, but for other cases the differences can be significant. There is a variety of
methods for reducing the complexity of digital circuits, a few of which are pre-
sented in Appendix B.

Up to this point we have assumed that high and low voltage levels correspond to
logical 1 and O, or TRUE and FALSE, respectively, which is known as active
high or positive logic. We can make the reverse assignment instead: low voltage
for logical 1 and high voltage for logical 0, which is known as active low or neg-
ative logic. The use of negative logic is sometimes preferred to positive logic for
applications in which the logic inhibits an event rather than enabling an event.

Figure A-19 illustrates the behavior of AND-OR and NAND-NOR gate pairs
for both positive and negative logic. The positive logic AND gate behaves as a
negative logic OR gate. The physical logic gate is the same regardless of the posi-
tive or negative sense of the logic — only the interpretation of the signals is
changed.

437

438

Voltage Levels Positive Logic Levels Negative Logic Levels
A B F A B|F A B|F
low low low 0 0|0 1 1(1
low high low 01]|0 1 0f1
high low low 1 00 0 1|1
high high [high 1 1)1 0 0|0
A— Physicd | A _ A _
B —| AND gate B F=AB B F=A+B
Voltage Levels Positive Logic Levels Negative Logic Levels
A B F A B| F A B| F
low low high 0 0|1 1 1|0
low high | high 0 1|1 1 0|0
high low high 1 0|1 0 1|0
high high low 110 0 0|1

A— Physica
B—INANDgae[F g:Do—inB QD—F:A+B

Figure A-19 Positive and negative logic assignments for AND-OR and NAND-NOR
duals.

The mixing of positive and negative logic in the same system should be avoided
to prevent confusion, but sometimes, it cannot be avoided. For these cases, a
technique known as “bubble matching” helps keep the proper logic sense correct.
The idea is to assume that all logic is asserted high (positive logic) and to place a
bubble (denoting logical inversion) at the inputs or outputs of any negative logic
circuits. Note that these bubbles are the same in function as the bubbles that
appear at the complemented outputs of logic gates such as NOR and NAND.
That is, the signal that leaves a bubble is the complement of the signal that enters
it.

Consider the circuit shown in Figure A-20a, in which the outputs of two positive

Positive logic XOQ Positive Negative logic %D Negative
Positive logic X, Logic Negative logic X Logic

@ ()
X, Bubble match

X . Negative logic ‘*

Negative logic XoZ:D_Q Negative Negative

Negatvelogie Xl* A T f e Negative logic T ? e
Bubble mismatch X1Bubble match

(©) (d)

Figure A-20 The process of bubble matching.

logic circuits are combined through an AND gate that is connected to a positive
logic system. A logically equivalent system for negative logic is shown in Figure
A-20b. In the process of bubble matching, a bubble is placed on each active low
input or output as shown in Figure A-20c.

To simplify the process of analyzing the circuit, active low input bubbles need to
be matched with active low output bubbles. In Figure A-20c there are bubble
mismatches because there is only one bubble on each line. DeMorgan’s theorem
is used in converting the OR gate in Figure A-20c to the NAND gate with com-
plemented inputs in Figure A-20d, in which the bubble mismatches have been
fixed.

Logic gates and other logic components have a great deal of technical specifica-
tions that are relevant to the design and analysis of digital circuits. The data
sheet, or “spec sheet,” lists technical characteristics of a logic component. An
example of a data sheet is shown in Figure A-21. The data sheet starts with a title
for the component, which for this case is the SN7400 NAND gate. The descrip-
tion gives a functional description of the component in textual form.

The package section shows the pin layout and the pin assignments. There can be
several package types for the same component. The function table enumerates
the input-output behavior of the component from a functional perspective. The
symbols “H” and “L” stand for “high” and “low” voltages respectively, to avoid
confusion with the sense of positive or negative logic. The symbol “X” indicates
that the value at an input does not influence the output. The logic diagram
describes the logical behavior of the component, using positive logic for this case.
All four NAND gates are shown with their pin assighments.

The schematic shows the transistor level circuitry for each gate. In the text, we
treat this low level circuitry as an abstraction that is embodied in the logic gate
symbols.

The “absolute maximum ratings” section lists the range of environmental condi-
tions in which the component will safely operate. The supply voltage can go as
high as 7 V and the input voltage can go up to 5.5 V. The ambient temperature
should be between 0° C and 70° C during operation, but can vary between —65°
C and 150° C when the component is not being used.

439

440

SN7400 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

description
These devices contain four independent schematic (each gate)
2-input NAND gates. Vee
function table (each gate) package (top view) 4kQ 1.6 kQ 130Q
INPUTS | OUTPUT 1adr Unh vee
A B Y 1802 13048
1vgs 2faa
HooH L oads upay A
L X H 280s wh3 g
2vges 9Q3A
X L H enod7 shay v
absolute maximum ratings
Supply voltage, VCC 7V
Input voltage: 55V 1kQ
Operating free-air temperature range: 0°Cto70°C
Storage temperature range —65°Cto 150 °C = GND

recommended operating conditions

logic diagram (positive logic) MIN NOM MAX | UNIT
\ Supply voltage 4.75 5 5.25 \%
ZA:D_ Vi High-level input voltage 2 \%
2y
;i Vi Low-level input voltage 0.8 \
P— 3y
38 lon High-level output current -04 | mA
aA
48 :D_‘W lo. Low-level output current 16 | mA
=A Ta Operating free-air temperature 0 70 °C

electrical characteristics over recommended operating free-air temperature range

MIN TYP MAX UNIT
Vou Vec=MIN, V) =08V, lgy=-04mA | 24 34 v
VoL Ve = MIN, Vi =2V, I, = 16 mA 02 04 v
I Vee = MAX, V= 2.4V 40 pA
I Vee = MAX, V= 0.4V -16 mA
lcch Vee = MAX, V=0V 4 8 mA
lceL Vee = MAX, V=45V 12 22 mA

switching characteristics, Voc =5V, Tp = 25°C

PARAMETER | FROM (input) [TO (output) TEST CONDITIONS | MIN TYP MAX [UNIT

tpLH AorB v Ry =400 Q 1 22| ns
CL=15pF 7 15| ns

tpHL

Figure A-21 Simplified data sheet for 7400 NAND gate, adapted from Texas Instruments
TTL Databook [Texas Instruments, 1988].

Despite the absolute maximum rating specifications, the recommended operat-
ing conditions should be used during operation. The recommended operating
conditions are characterized by minimum (MIN), normal (NOM), and maxi-
mum (MAX) ratings.

The electrical characteristics describe the behavior of the component under cer-
tain operating conditions. Vo and Vg are the minimum output high voltage
and the maximum output low voltage, respectively. I, and I, are the maximum

currents into an input pin when the input is high or low, respectively. |ccH and
Iccy are the package’s power supply currents when all outputs are high or low,
respectively.

This data can be used in determining maximum fan-outs under the given condi-
tions. Fan-out is a measure of the number of inputs that a single output can
drive, for logic gates implemented in the same technology. That is, a logic gate
with a fan-out of 10 can drive the inputs of 10 other logic gates of the same type.
Similarly, fan-in is a measure of the number of inputs that a logic gate can accept
(simply, the number of input lines to that gate). The absolute value of 15 must
be greater than or equal to the sum of all I, currents that are being driven, and
loL must be greater than or equal to the sum of all I}, currents (absolute values)
that are being driven. The absolute value of 15 for a 7400 gate is .4 mA (or 400
HA), and so a 7400 gate output can thus drive ten 7400 inputs (I, = 40 pA per
input).

The switching characteristics show the propagation delay to switch the output
from a low to a high voltage (tp |y) and the propagation delay to switch the out-
put from a high to a low voltage (tpy,). The maximum ratings show the worst
cases. A circuit can be safely designed using the typical case as the worst case, but
only if a test-and-select-the-best approach is used. That is, since tp yy varies
between 11 ns and 22 ns and tppy varies between 7 ns and 15 ns from one pack-
aged component to the next, components can be individually tested to deter-
mine their true characteristics. Not all components of the same type behave
identically, even under the most stringent fabrication controls, and the differ-
ences can be reduced by testing and selecting the best components.

High level digital circuit designs are normally made using collections of logic
gates referred to as components, rather than using individual logic gates. This
allows a degree of circuit complexity to be abstracted away, and also simplifies the
process of modeling the behavior of circuits and characterizing their perfor-
mance. A few of the more common components are described in the sections
that follow.

LEVELS OF INTEGRATION

Up to this point, we have focused on the design of combinational logic units.
Since we have been working with individual logic gates, we have been working at

441

442

the level of small scale integration (SSI), in which there are 10 — 100 compo-
nents per chip. (“Components” has a different meaning in this context, referring
to transistors and other discrete elements.) Although we sometimes need to work
at this low level in practice, typically for high performance circuits, the advent of
microelectronics allows us to work at higher levels of integration. In medium
scale integration (MSI), approximately 100 — 1000 components appear in a sin-
gle chip. Large scale integration (LSI) deals with circuits that contain 1000 —
10,000 components per chip, and very large scale integration (VLSI) goes
higher still. There are no sharp breaks between the classes of integration, but the
distinctions are useful in comparing the relative complexity of circuits. In this
section we deal primarily with MSI components.

MULTIPLEXERS

A multiplexer (MUX) is a component that connects a number of inputs to a sin-
gle output. A block diagram and the corresponding truth table for a 4-to-1 MUX
are shown in Figure A-22. The output F takes on the value of the data input that

2 Do 00 AB | F
E‘ D, —o1 L
g D,—10 00 Dy
0 D;,—u 01 | D
10 | D,
|| 11 | b,
A B

Control Inputs
F= ABD,+ ABD,+ ABD,+ ABD
Figure A-22 Block diagram and truth table for a 4-to-1 MUX.
is selected by control lines A and B. For example, if AB = 00, then the value on

line Dy (a 0 or a 1) will appear at F. The corresponding AND-OR circuit is
shown in Figure A-23.

When we design circuits with MUXes, we normally use the “black box” form
shown in Figure A-22, rather than the more detailed form shown in Figure A-23.
In this way, we can abstract away detail when designing complex circuits.

Multiplexers can be used to implement Boolean functions. In Figure A-24, an
8-to-1 MUX implements the majority function. The data inputs are taken
directly from the truth table for the majority function, and the control inputs are

Do

JUUU

7|4

A B
Figure A-23 An AND-OR circuit implements a 4-to-1 MUX.

ABC | M 07 000
0— 001
000 0 0— 010
001 0 1—on I
010 0 0—1 100
0 11 1 1—101
1 00 0 1— 110
101 1 1— 11
110 1
111 1 []]
ABC

Figure A-24 An 8-to-1 multiplexer implements the majority function.

assigned to the variables A, B, and C. The MUX implements the function by
passing a 1 from the input of each true minterm to the output. The O inputs
mark portions of the MUX that are not needed in implementing the function,
and as a result, a number of logic gates are underutilized. Although portions of
MUXes are almost always unused in implementing Boolean functions, multi-
plexers are widely used because their generality simplifies the design process, and
their modularity simplifies the implementation.

As another case, consider implementing a function of three variables using a
4-to-1 MUX. Figure A-25 shows a three-variable truth table and a 4-to-1 MUX

443

444

ABC | F
0oo0o0 | 0|] 0—00
oo1| o |0 1—o -
010 1__1 c—j10
011 1| c—in
1001 0
101 1:C ||
110 1 =

S A B
111 0 |-

Figure A-25 A 4-to-1 MUX implements a three-variable function.

that implements function F. We allow data inputs to be taken from the set {0, 1,
C, C}, and the groupings are obtained as shown in the truth table. When AB =
00, then F = 0 regardless of whether C =0 or C = 1, and so a O is placed at the
corresponding 00 data input line on the MUX. When AB = 01, then F = 1
regardless of whether C =0 or C =1, and so a 1 is placed at the 01 data input.
When AB = 10, then F = C since F is 0 when C is 0 and F is 1 when C is 1, and
so C is placed at the 10 input. Finally, when AB = 11, then F = C, and so C is
placed at the 11 input. In this way, we can implement a three-variable function
using a two-variable MUX.

DEMULTIPLEXERS

A demultiplexer (DEMUX) is the converse of a MUX. A block diagram of a
1-to-4 DEMUX with control inputs A and B and the corresponding truth table
are shown in Figure A-26. A DEMUX sends its single data input D to one of its

00— Fo D AB | FoF F, Fy
_ ol F,

D 10— F, 000 | 0000
11— F, 001 | 0000
010| 0000
|| 0011|0000
A B 1 00 1 0 0O
101 | 0100
Fo =DAB F>= DAB 11010010
= 111 | 0001

F. =DAB Fs= DAB

Figure A-26 Block diagram and truth table for a 1-to-4 DEMUX.

outputs F; according to the settings of the control inputs. A circuit for a 1-to-4
DEMUX is shown in Figure A-27. An application for a DEMUX is to send data

Fo

JUUU

2|5

A B

Figure A-27 A circuit for a 1-to-4 DEMUX.

from a single source to one of a number of destinations, such as from a call
request button for an elevator to the closest elevator car. The DEMUX is not
normally used in implementing ordinary Boolean functions, although there are
ways to do it (see problem A.17).

DECODERS

A decoder translates a logical encoding into a spatial location. Exactly one out-
put of a decoder is high (logical 1) at any time, which is determined by the set-
tings on the control inputs. A block diagram and a truth table for a 2-to-4
decoder with control inputs A and B are shown in Figure A-28. A corresponding

Enable = 1 Enable = 0
AB | D,D,D, D, A B | D,D, D, D,
OO_DO
A—] 01— b, oo0o| 1000 00| 0000
B — 10— D, 01| 0100 01| 0000
| u—o 10| 0010 10| 0000
Endble s 110001 11| 0000

D,= AB D, =AB D,= AB Ds=AB

Figure A-28 Block diagram and truth table for a 2-to-4 decoder.

445

446

logic diagram that implements the decoder is shown in Figure A-29. A decoder

1 o

—> D)o,

— = o
Enable _})

Figure A-29 An AND circuit for a 2-to-4 decoder.

may be used to control other circuits, and at times it may be inappropriate to
enable any of the other circuits. For that reason, we add an enable line to the
decoder, which forces all outputs to 0 if a 0 is applied at its input. (Notice the
logical equivalence between the DEMUX with an input of 1 and the decoder.)

One application for a decoder is in translating memory addresses into physical
locations. Decoders can also be used in implementing Boolean functions. Since
each output line corresponds to a different minterm, a function can be imple-
mented by logically ORing the outputs that correspond to the true minterms in
the function. For example, in Figure A-30, a 3-to-8 decoder implements the

000—
001—
010—
011
100—
101
110
111,

Figure A-30 A 3-to-8 decoder implements the majority function.

majority function. Unused outputs remain disconnected.

PRIORITY ENCODERS

An encoder translates a set of inputs into a binary encoding, and can be thought
of as the converse of a decoder. A priority encoder is one type of an encoder, in
which an ordering is imposed on the inputs. A block diagram and a correspond-
ing truth table for a 4-to-2 priority encoder are shown in Figure A-31. A priority

&
>
>
>
T
o

o

Ay — 00
A, — 01 — F,
A,—1 10 — F
As—] 11

%:§§&+§&&
AoAcAs + AA

uy
I
PFRRPRRPRRPRPPRPOOOOOOOO

PRPRRPPRPOOOORRFRPRFRPFLPLPOOOO
PRPOORFRPROORPRFPOORRFRLOO
POFRPOFRPOFRPOFRPROFRPROFRPORO
cNoololoNololoNoNoNoNal Ui Ll i}
[eeolojolololoNal i i l leoNoh e

Figure A-31 Block diagram and truth table for a 4-to-2 priority encoder.

scheme is imposed on the inputs in which A; has higher priority than A;,;. The
two-bit output takes on the value 00, 01, 10, or 11 depending on which inputs
are active (in the 1 state) and their relative priorities. When no inputs are active,
then the output defaults to giving priority to Ay (FgF; = 00).

Priority encoders are used for arbitrating among a number of devices that com-
pete for the same resource, as when a number of users simultaneously attempt to
log on to a computer system. A circuit diagram for a 4-to-2 priority encoder is
shown in Figure A-32. (The circuit has been reduced using methods described in
Appendix B, but the input/output behavior can be verified without needing to
know the reduction method.)

PROGRAMMABLE LOGIC ARRAYS

A programmable logic array (PLA) is a component that consists of a customiz-
able AND matrix followed by a customizable OR matrix. A PLA with three
inputs and two outputs is shown in Figure A-33. The three inputs A, B, and C

447

448

Y IV Y

A

Figure A-32 Logic diagram for a 4-to-2 priority encoder.

and their complements are available at the inputs of each of eight AND gates
that generate eight product terms. The outputs of the AND gates are available at
the inputs of each of the OR gates that generate functions Fy and F;. A program-
mable fuse is placed at each crosspoint in the AND and OR matrices. The matri-
ces are customized for specific functions by disabling fuses. When a fuse is
disabled at an input to an AND gate, then the AND gate behaves as if the input
is tied to a 1. Similarly, a disabled input to an OR gate in a PLA behaves as if the
input is tied to a 0.

As an example of how a PLA is used, consider implementing the majority func-
tion on a 3x2 PLA (three input variables x two output functions). In order to
simplify the illustrations, the form shown in Figure A-34 is used, in which it is
understood that the single input line into each AND gate represents six input
lines, and the single input line into each OR gate represents eight input lines.
Darkened circles are placed at the crosspoints to indicate where connections are
made. In Figure A-34, the majority function is implemented using just half of
the PLA, which leaves the rest of the PLA available for another function.

PLAs are workhorse components that are used throughout digital circuits. An
advantage of using PLAs is that there are only a few inputs and a few outputs,
while there is a large number of logic gates between the inputs and outputs. It is
important to minimize the number of connections at the circuit edges in order to
modularize a system into discrete components that are designed and imple-
mented separately. A PLA is ideal for this purpose, and a number of automated
programs exist for designing PLAs from functional descriptions. In keeping with
this concept of modularity, we will sometimes represent a PLA as a black box as
shown in Figure A-35, and assume that we can safely leave the design of the
internals of the PLA to an automated program.

449

A B C
OR matrix
. : |
A h]
N —
) A [LN w LY
—
T B L) L
o '__/
o, —
) h ["o w LY
s
o, —
RS o L »
—
T s L L
& ;_/
N —
(& o -
=
Y
o - =
| ==
Fuses
| L ~L_1— L J ~L_1—
AND matrix
Fo F,
Figure A-33 A programmable logic array.
A— — Fo
B — PLA
C— — F

Figure A-35 Black box representation of a PLA.

450

ABC

ABC

JUUJUUUUU

VY

(Majority) (Unused)

Figure A-34 Simplified representation of a PLA.

Bl W EXAMPLE: ARIPPLE-CARRY ADDER

As an example of how PLAs are used in the design of a digital circuit, consider
designing a circuit that adds two binary numbers. Binary addition is performed
similar to the way we perform decimal addition by hand, as illustrated in Figure

Caryln —> 0 0 0 0 1 1 1 1
OperandA —> 0 0 1 1 0 0 1 1
OperandB —> + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1
00 01 01 10 01 10 10 11
Cary Sum Example:

Out Carry 1000

Operand A 0100

OperandB + 0 1 1 0

Sum 1010

Figure A-36 Example of addition for two unsigned binary numbers.

451

A-36. Two binary numbers A and B are added from right to left, creating a sum
and a carry in each bit position. Two input bits and a carry-in must be summed
at each bit position, so that a total of eight input combinations must be consid-
ered as shown in the truth table in Figure A-37.

AIBlcl SC|+1 BiAi
000 0 0 C
001 1 0 ¢¢V
010 1 0 Full
011 0 1 adder
100 1 0

101 0 1 CM(J¢
110 0 1 S
111 1 1

Figure A-37 Truth table for a full adder.

The truth table in Figure A-37 describes an element known as a full adder,
which is shown schematically in the figure. A half adder, which could be used
for the rightmost bit position, adds two bits and produces a sum and a carry,
whereas a full adder adds two bits and a carry and produces a sum and a carry.
The half adder is not used here in order to keep the number of different compo-
nents to a minimum. Four full adders can be cascaded to form an adder large
enough to add the four-bit numbers used in the example of Figure A-36, as
shown in Figure A-38. The rightmost full adder has a carry-in (cg) of 0.

b; a; b, a, b, &y by &g
C3 C, C; Co
YYY | YYY | YYY | ¥vy
Full Full Full Full
adder adder adder adder
«ely Sy HY Y
S3 S, S S

Figure A-38 A four-bit adder implemented with a cascade of full adders.

The reader will note that the value for a given sum bit cannot be computed until
the carry-out from the previous full adder has been computed. The circuit is
called a “ripple carry” adder because the correct values for the carry bits “ripple”
through the circuit from right to left. The reader may also observe that even
though the circuit looks “parallel,” in reality the sum bits are computed serially

452

from right to left. This is a major disadvantage to the circuit. We discusss ways of
speeding up addition in Chapter 3, Arithmetic.

An approach to designing a full adder is to use a PLA, as shown in Figure A-39.

A B Cin

Y|V

JUUUUUUU

Figure A-39 PLA realization of a full adder.

The PLA approach is very general, and computer-aided design (CAD) tools for
VLSI typically favor the use of PLAs over random logic or MUXes because of
their generality. CAD tools typically reduce the sizes of the PLAs (we will see a
few reduction techniques in Appendix B) and so the seemingly high gate count
for the PLA is not actually so high in practice. =

In the earlier part of this appendix we explored combinational logic units, in
which the outputs are completely determined by functions of the inputs. A
sequential logic unit, commonly referred to as a finite state machine (FSM),
takes an input and a current state, and produces an output and a new state. An
FSM is distinguished from a CLU in that the past history of the inputs to the

FSM influences its state and output. This is important for implementing mem-
ory circuits as well as control units in a computer.

The classical model of a finite state machine is shown in Figure A-40. A CLU

o =] —— >
Inputs : : Outputs
k —)\ Combinationa > m
> logic unit

A'Y
>

[>—— State bhits

QoDo
> So
Qn Dn
Synchronization Bfy S0
signa
Delay elements (one per state bit)

Figure A-40 Classical model of a finite state machine.

takes inputs from lines iy — i, which are external to the FSM, and also takes
inputs from state bits sy — s, which are internal to the FSM. The CLU produces
output bits fy — f,,, and new state bits. Delay elements maintain the current state
of the FSM, until a synchronization signal causes the D; values to be loaded into
the s;, which appear at Q; as the new state bits.

THE S-R FLIP-FLOP

A flip-flop is an arrangement of logic gates that maintains a stable output even
after the inputs are made inactive. The output of a flip-flop is determined by
both the current inputs and the past history of inputs, and thus a combinational
logic unit is not powerful enough to capture this behavior. A flip-flop can be used
to store a single bit of information, and serves as a building block for computer
memory.

If either or both inputs of a two-input NOR gate is 1, then the output of the
NOR gate is 0, otherwise the output is 1. As we saw earlier in this appendix, the
time that it takes for a signal to propagate from the inputs of a logic gate to the
output is not instantaneous, and there is some delay At that represents the prop-

453

454

agation delay through the gate. The delay is sometimes considered lumped at the
output of the gate for purposes of analysis, as illustrated in Figure A-41. The

o— AT— A+ o
B A+B :

Timing Behavior
Figure A-41 A NOR gate with a lumped delay at its output.

lumped delay is not normally indicated in circuit diagrams but its presence is
implied.

The propagation time through the NOR gate affects the operation of a flip-flop.
Consider the set-reset (S-R) flip-flop shown in Figure A-42, which consists of

QSR | Q. s_ [[
s 000 0 R f
Q 001 0 ; !
010 1 ’ ,—ll
0 1 1 | (disalowed) Q — N
100 1 - o
R Q 101 0 Q ;
110 1 At < AT <
. < <>
1 1 1 | (disdlowed) Y e

Timing Behavior
Figure A-42 An S-R flip-flop.

two cross-coupled NOR gates. If we apply a1to S, then Q goes to O after a delay
AT, which causes Q to go to 1 (assuming R is initially O) after a delay 2At. As a
result of the finite propagation time, there is a brief period of time At when both
the Q and Q outputs assume a value of 0, which is logically incorrect, but this
condition will be fixed when the master-slave configuration is discussed later. If
we now apply a 0 to S, then Q retains its state until some later time when R goes
to 1. The S-R flip-flop thus holds a single bit of information and serves as an ele-
mentary memory element.

There is more than one way to make an S-R flip-flop, and the use of cross-cou-
pled NOR gates is just one configuration. Two cross-coupled NAND gates can

also implement an S-R flip-flop, with S = R = 1 being the quiescent state. Making
use of DeMorgan’s theorem, we can convert the NOR gates of an S-R flip-flop
into AND gates as shown in Figure A-43. By “bubble pushing,” we change the

s s s R
Q Q Q Q
R Q R Q R Q s Q

Figure A-43 A NOR implementation of an S-R flip-flop is converted into a NAND implemen-
tation.

AND gates into NAND gates, and then reverse the sense of S and R to remove
the remaining input bubbles.

THE CLOCKED S-R FLIP-FLOP

Now consider that the inputs to the S-R flip-flop may originate from the outputs
of some other circuits, whose inputs may originate from the outputs of other cir-
cuits, forming a cascade of logic circuits. This mirrors the form of conventional
digital circuits. A problem with cascading circuits is that transitions may occur at
times that are not desired.

Consider the circuit shown in Figure A-44. If signals A, B, and C all change from

 Glitch caused by
c S r ahazard

(o)

A> <

L

At> <
2AT

Timing Behavior

Figure A-44 A circuit with a hazard.

455

456

the O state to the 1 state, then signal C may reach the XOR gate before A and B
propagate through the AND gate, which will momentarily produce a 1 output at
S, which will revert to 0 when the output of the AND gate settles and is XORed
with C. At this point it may be too late, however, since S may be in the 1 state
long enough to set the flip-flop, destroying the integrity of the stored bit.

When the final state of a flip-flop is sensitive to the relative arrival times of sig-
nals, the result may be a glitch, which is an unwanted state or output. A circuit
that can produce a glitch is said to have a hazard. The hazard may or may not
manifest itself as a glitch, depending on the operating conditions of the circuit at
a particular time.

In order to achieve synchronization in a controlled fashion, a clock signal is pro-
vided, to which every state-dependent circuit (such as a flip-flop) synchronizes
itself by accepting inputs only at discrete times. A clock circuit produces a con-
tinuous stream of 1's and 0%, as indicated by the waveform shown in Figure

Amplitude

Time

€

Cycle time = 25ns

Figure A-45 A clock waveform.

A-45. The time required for the clock to rise, then fall, then begin to rise again is
called the cycle time. The square edges that are shown in the waveform represent
an ideal square wave. In practice, the edges are rounded because instantaneous
rise and fall times do not occur.

The clock rate is taken as the inverse of the cycle time. For a cycle time of 25
ns/cycle, the corresponding clock rate is 1/25 cycles/ns, which corresponds to
40,000,000 cycles per second, or 40 MHz (for 40 megahertz). A list of other
abbreviations that are commonly used to specify cycle times and clock rates is
shown in Table A.2.

We can make use of the clock signal to eliminate the hazard by creating a
clocked S-R flip-flop, which is shown in Figure A-46. The symbol CLK labels
the clock input. Now, S and R cannot change the state of the flip-flop until the

Prefix Abbrev. Quantity Prefix Abbrev. Quantity
milli m 1073 Kilo K 10°
micro u 10°° Mega M 10°
nano n 10-° Giga G 10°
pico p 1012 Tera T 1012
femo f 10*° Peta P 10
ato a 108 Exa E 10'®

Table A.2 Standard scientific prefixes for cycle times and clock rates.

S } B R
CLK o I_l
o T

Q L
AT> <
<>
2AT
Timing Behavior
Figure A-46 A clocked S-R flip-flop.

clock is high. Thus, as long as S and R settle into stable states while the clock is
low, then when the clock makes a transition to 1, the stable value will be stored
in the flip-flop.

THE D FLIP-FLOP AND THE MASTER-SLAVE CONFIGURATION

A disadvantage of the S-R flip-flop is that in order to store a 1 or a 0, we need to
apply a 1 to a different input (S or R) depending on the value that we want to
store. An alternative configuration that allows either a 0 or a 1 to be applied at
the input is the D flip-flop which is shown in Figure A-47. The D flip-flop is
constructed by placing an inverter across the S and R inputs of an S-R flip-flop.
Now, when the clock goes high, the value on the D line is stored in the flip-flop.

The D flip-flop is commonly used in situations where there is feedback from the
output back to the input through some other circuitry, and this feedback can

457

458

o_[1
CLK
o [T
6 i L——Il ‘
P> AT > <At
—D Qr— < <>
2AT 2AT
Symbol
—lc ol— Timing Behavior

Figure A-47 A clocked D flip-flop. The letter ‘C’ denotes the clock input in the symbol

form.
sometimes cause the flip-flop to change states more than once per clock cycle. In
order to ensure that the flip-flop changes state just once per clock pulse, we break
the feedback loop by constructing a master-slave flip-flop as shown in Figure

Master Slave D
D D Qu D Q™ kK |—
Circuit - :
CLK c CQ— Qu A R
4|>_‘ o[

—pb o Qs

L > AT > <M
<> O | O O |
| oL— 3AT 2At 2At 2At

Timing Behavior

Figure A-48 A master-slave flip-flop.

A-48. The master-slave flip-flop consists of two flip-flops arranged in tandem,
with an inverted clock used for the second flip-flop. The master flip-flop changes
when the clock is high, but the slave flip-flop does not change until the clock is
low, thus the clock must first go high and then go low before the input at D in
the master is clocked through to Qg in the slave. The triangle shown in the sym-
bol for the master-slave flip-flop indicates that transitions at the output occur
only on arising (0 to 1 transition) or falling (1 to O transition) edge of the clock.
Transitions at the output do not occur continuously during a high level of the
clock as for the clocked S-R flip-flop. For the configuration shown in Figure
A-48, the transition at the output occurs on the falling edge of the clock.

A level-triggered flip-flop changes state continuously while the clock is high (or
low, depending on how the flip-flop is designed). An edge-triggered flip-flop

changes only on a high-to-low or low-to-high clock transition. Some textbooks
do not place a triangle at the clock input in order to distinguish between
level-triggered and edge-triggered flip-flops, and indicate one form or the other
based on their usage or in some other way. In practice the notation is held some-
what loosely. Here, we will use the triangle symbol and will also make the
flip-flop type clear from the way it is used.

J-K AND T FLIP-FLOPS

In addition to the S-R and D flip-flops, the J-K and T flip-flops are very com-
mon. The J-K flip-flop behaves similarly to an S-R flip-flop, except that it flips its
state when both inputs are set to 1. The T flip-flop (for “toggle”) alternates states,
as when the inputs to a J-K flip-flop are set to 1. Logic diagrams and symbols for
the clocked J-K and T flip-flops are shown in Figure A-49 and Figure A-50,

J _/ 0
CLK —
1k ol—
K _/ —Q °
Circuit Symbol
Figure A-49 Logic diagram and symbol for a basic J-K flip-flop.
J Qr— Qr—
T T—
LK Q— Q—
Circuit Symbol

Figure A-50 Logic diagram and symbol for a T flip-flop.

respectively.

A problem with the toggle mode operation for the J-K flip-flop is that when J
and K are both high when the clock is also high, the flip-flop may toggle more
than once before the clock goes low. This is another situation in which a mas-
ter-slave configuration is appropriate. A schematic diagram for a master-slave J-K

459

460

flip-flop is shown in Figure A-51. The “endless toggle” problem is now fixed with

)

CLK — — —

[

{>c Circuit Symbol

Figure A-51 Logic diagram and symbol for a master-slave J-K flip-flop.

this configuration, but there is a new problem of “one’s catching.” If an input is
high for any time while the clock is high, and if the input is simply in a transition
mode before settling, the flip-flop will “see” the 1 as if it was meant to be a valid
input. The situation can be avoided if hazards are eliminated in the circuit that
provides the inputs.

We can solve the one’s catching problem by constructing edge triggered flip-flops
in which only the transition of the clock (low to high for positive edge triggered
and high to low for negative edge triggered) causes the inputs to be sampled, at
which point the inputs should be stable.

Figure A-52 shows a configuration for a negative edge triggered D flip-flop.
When the clock is high, the top and bottom latches output 0’s to the main (out-
put) S-R latch. The D input can change an arbitrary number of times while the
clock is high without affecting the state of the main latch. When the clock goes
low, only the settled values of the top and bottom latches affect the state of the
main latch. While the clock is low, if the D input changes, the main flip-flop is
not affected.

Refer again to the classical model of an FSM shown in Figure A-40. The delay
elements can be implemented with master-slave flip-flops, and the synchroniza-
tion signal can be provided by the clock. In general, there should be a flip-flop on
each feedback line. Notice that we can label the flip-flops in any convenient way
as long as the meaning is clear. In Figure A-40, the positions of the inputs D; and
the outputs Q; have been interchanged with respect to the flip-flop figures in the
previous section.

461

Stores 5

cLK —

S
Main latch

Stores D
Figure A-52 Negative edge triggered D flip-flop.

Consider a modulo(4) synchronous counter FSM, which counts from 00 to 11
and then repeats. A block diagram of a synchronous counter FSM is shown in
Figure A-53. The RESET (positive logic) function operates synchronously with

Time(t) 43210 43210 Time(t)
00001—m| RESET Oo—™ 01100
3-bit ql—>01010
Synchronous
> Counter D Q[
SS—Dp QF S
s, Q
CLK Q

Figure A-53 A modulo(4) counter.

respect to the clock. The outputs appear as a sequence of values on lines gq and
g, at time steps corresponding to the clock. As the outputs are generated, a new
state s13g is generated that is fed back to the input.

462

We can consider designing the counter by enumerating all possible input condi-
tions and then creating four functions for the output q,0y and the state s;5y. The
corresponding functions can then be used to create a combinational logic circuit
that implements the counter. Two flip-flops are used for the two state bits.

How do we know that two state bits are needed on the feedback path? The fact
is, we may not know in advance how many state bits are needed, and so we
would like to have a more general approach to designing a finite state machine.
For the counter, we can start by constructing a state transition diagram as
shown in Figure A-54, in which each state represents a count from 00 to 11, and

Output 00 Output 01
state Sate
RESET 0U1 0/01 /J

Output 10 Output 11
State state

Figure A-54 State transition diagram for a modulo(4) counter.

the directed arcs represent transitions between states. State A represents the case
in which the count is 00, and states B, C, and D represent counts 01, 10, and 11
respectively.

Assume the FSM is initially in state A. There are two possible input conditions: 0
or 1. If the input (RESET) line is O then the FSM advances to state B and out-
puts 01. If the RESET line is 1, then the FSM remains in state A and outputs 00.
Similarly, when the FSM is in state B, the FSM advances to state C and outputs
10 if the RESET line is 0, otherwise the FSM returns to state A and outputs 00.
Transitions from the remaining states are interpreted similarly.

Once we have created the state transition diagram, we can rewrite it in tabular
form as a state table as shown in Figure A-55. The present states are shown at the

Input RESET
Present state 0 1
A B/01 A/00
B C/10 A/00
C D/11 A/00
D A/0O A/00
E A
Next state Output

Figure A-55 State table for a modulo(4) counter.

left, and the input conditions are shown at the top. The entries in the table corre-
spond to next state/output pairs which are taken directly from the state transition
diagram in Figure A-54. The highlighted entry corresponds to the case in which
the present state is B and the input is 0. For this case, the next state is C and the
next output is 10.

After we have created the state table, we encode the states in binary. Since there
are four states, we need at least two bits to uniquely encode the states. We arbi-
trarily choose the encoding: A = 00, B = 01, C = 10, and D = 11, and replace
every occurrence of A, B, C, and D with their respective encodings as shown in
Figure A-56. In practice, the state encoding may affect the form of the resulting

Input RESET
Present
state (S) 0 1
A:00 01/01 00/00
B:01 10/10 00/00
C:10 11/11 00/00
D:11 00/00 00/00

Figure A-56 State table with state assignments for a modulo(4) counter.

circuit, but the circuit will be logically correct regardless of the encoding.

From the state table, we can extract truth tables for the next state and output
functions as shown in Figure A-57. The subscripts for the state variables indicate
timing relationships. s; is the present state and sy, is the next state. The sub-
scripts are commonly omitted since it is understood that the present signals
appear on the right side of the equation and the next signals appear on the left

463

464

01
10
11
00
00
00
00
00

RE?t)ET s:() S(t) | siS(t+1) GuGo(t+1)
r

0 0 0 01

0 0 1 10

0 1 0 11

0 1 1 00

1 0 0 00

1 0 1 00

1 1 0 00

1 1 1 00

S(t+) = r)s,Os() + s Hs)
si(t+1) = r)s,O%®) + rOs O
Q1) = rMss® + rH)s s
A1) = rHs s + rOsOs®)

Figure A-57 Truth table for the next state and output functions for a modulo(4) counter.

side of the equation. Notice that sy(t+1) = ggp(t+1) and s;(t+1) = qq(t+1), so we
only need to implement s(t+1) and s;(t+1) and tap the outputs for gg(t+1) and

qq(t+1).

Finally, we implement the next state and output functions using logic gates and
master-slave D flip-flops for the state variables as shown in Figure A-58.

RESET {>=

|

CLK 6

O

_

DQ

S
Q

1>
1.

.

Figure A-58 Logic design for a modulo(4) counter.

JUU U

EXAMPLE: ASEQUENCE DETECTOR

As another example, we would like to design a machine that outputs a 1 when
exactly two of the last three inputs are 1. For example, an input sequence of
011011100 produces an output sequence of 001111010. There is a one-bit serial

input line, and we can assume that initially no inputs have been seen. For this
problem, we will use D flip-flops and 8-to-1 MU XGes.

We start by constructing a state transition diagram, as shown in Figure A-59.

0/0

U1

Figure A-59 State transition diagram for sequence detector.

There are eight possible three-bit sequences that our machine will observe: 000,
001, 010, 011, 100, 101, 110, and 111. State A is the initial state, in which we
assume that no inputs have yet been seen. In states B and C, we have seen only
one input, so we cannot output a 1 yet. In states D, E, F, and G we have only
seen two inputs, so we cannot output a 1 yet, even though we have seen two 1's
at the input when we enter state G. The machine makes all subsequent transi-
tions among states D, E, F, and G. State D is visited when the last two inputs are
00. States E, F, and G are visited when the last two inputs are 01, 10, or 11,
respectively.

The next step is to create a state table as shown in Figure A-60, which is taken
directly from the state transition diagram. Next, we make a state assignment as
shown in Figure A-61a. We then use the state assignment to create a truth table
for the next state and output functions as shown in Figure Figure A-61b. The last
two entries in the table correspond to state 111, which cannot arise in practice,

465

466

Input X
Present state 0 1
A B/O C/0
B D/0 E/O
C F/0 G/0
D D/0 E/O
E F/0 G/1
F D/0 E/1
G F/1 G/0
Figure A-60 State table for sequence detector.

Input and Next state
stateat and output at
timet timet+1

95 HX| 52

Input

P X 0000[0010
Present state 0 1 00010100
0010({0110

$,5:% z z
A: 600 G016 61000 00111000
. 0100({1010

B: 001 011/0 100/0
0101(1100
C: 010 10/0 110/0 o110/l0110
D: 011 011/0 100/0 0111l1000
E: 100 101/0 110/1 1000|1010
F: 101 011/0 100/1 100111101
G: 110 101/1 110/0 1010/0110
1011|1001
(a 1100(1011

11011100

1110/,dddd

1111/, dddd

(b)

Figure A-61 State assignment and truth table for sequence detector.

according to the state table in Figure A-61a. Therefore, the next state and output

entries do not matter, and are labeled as ‘d’ for don't care.

Finally, we create the circuit, which is shown in Figure A-62. There is one
flip-flop for each state variable, so there are a total of three flip-flops. There are
three next state functions and one output function, so there are four MUXes.
Notice that the choice of s, 51, and sq for the MUX control inputs is arbitrary.

Any other grouping or ordering will also work.

0~ 000
X~ 001
1= 010
X~ 011
17— 100
X101
17— 110
0111

000
001
010
011
100
101
110
0111

LI

X X x x| x x| x

Ol O

000
001
010
011
100
101
110
111

467

0—|
0—|
0—|
o—|
«—]
«—]

x—

0—

000
001
010
011
100
101
110
111

Ill

CLK

Figure A-62 Logic diagram for sequence detector.

H B EXAMPLE: AVENDING MACHINE CONTROLLER

For this problem, we will design a vending machine controller using D flip-flops
and a black box representation of a PLA (as in Figure A-35). The vending
machine accepts three U.S. coins: the nickel (5¢), the dime (10¢), and the quar-
ter (25¢). When the value of the inserted coins equals or exceeds 20¢, then the
machine dispenses the merchandise, returns any excess money, and waits for the
next transaction.

We begin by constructing a state transition diagram, as shown in Figure A-63. In

Figure A-63 State transition diagram for vending machine controller.

1/0 = Dispense/Do not
dispense merchandise

A dimeis

inserted

N/100

Vs
D/110<—

1/0 = Return/Do not return
anickel in change

1/0 = Return/Do not
return adime in change

state A, no coins have yet been inserted, and so the money credited is 0¢. If a
nickel or dime is inserted when the machine is in state A, then the FSM makes a
transition to state B or state C, respectively. If a quarter is inserted, then the

468

money credited to the customer is 25¢. The controller dispenses the merchan-
dise, returns a nickel in change, and remains in state A. This is indicated by the
label “Q/110” on the state A self-loop. States B and C are then expanded, pro-
ducing state D which is also expanded, producing the complete FSM for the
vending machine controller.

Notice the behavior that is specified by the state transition diagram when a quar-
ter is inserted when the FSM is in state D. Rather than dispensing product,
returning 20¢, and returning to state A, the machine dispenses product, returns
15¢, and makes a transition to state B. The machine keeps the 5¢, and awaits the
insertion of more money! In this case, the authors allowed this behavior for the
sake of simplicity, as it keeps the number of states down.

From the FSM we construct the state table shown in Figure A-64a. We then

Inputl N D Q Input{ N D Q
X X X
PS. 00 01 10 PS. & 5y 0’
A B/O00 C/000 A/110 S1% S1% | 4%
B C/000 D/000 A/101 A00 | 0000 10/000 00/110
C | b/ooo a100 A111 B:01 | 10/000 11/000 00/101
D A100 A/110 B/111 C:10 | 11000 00/100 00/111
D:11 | 00/100 00/110 0V111

@
(b)

Figure A-64 (a) State table for vending machine controller; (b) state assignment for vending ma-
chine controller.

make an arbitrary state assignment and encode the symbols N, D, and Q in
binary as shown in Figure A-64b. Finally, we create a circuit diagram, which is
shown in Figure A-65a. There are two state bits, so there are two D flip-flops.
The PLA takes four inputs for the present-state bits and the x;Xy coin bits. The
PLA produces five outputs for the next-state bits and the dispense and return
nickel/return dime bits. (We can assume that the clock input is asserted only on
an event such as an inserted coin.)

Notice that we have not explicitly specified the design of the PLA itself in obtain-
ing the FSM circuit in Figure A-65a. At this level of complexity, it is common to
use a computer program to generate a truth table, and then feed the truth table
to a PLA design program. We could generate the truth table and PLA design by
hand, of course, as shown in Figure A-65b and Figure A-65c.

. 2 0@ w
Xo ;SXS 4
== LI A
QD—‘)
% L0
@ 4 CLK P
R
QD —
S L2/
)

’_4\
eeeeeee e R LS/
state Coin state Rewurn dims
T 11 4 [6)

o SL%% | 19247

8
0 000001000 L/
1 0001|10000 e
2 0010[00110 19/
3 0011 | ddddd
4 010010000 {10)
5 010111000 —
6 011000101 12
7 0111|ddddd ==/
8 100011000)
9 100100100 ==/
0 1010 00111)
11 1011|ddddd 1147
2 1100 00100
13 1101, 00110
4 1110 01111
15 1111 ddddd

G5

. YYTYY

Figure A-65 (a) FSM circuit, (b) truth table, and (c) PLA realization for vending
machine controller.

The outputs of the FSM circuits we have studied so far are determined by the
present states and the inputs. The states are maintained in falling edge triggered
flip-flops, and so a state change can only occur on the falling edge of the clock.
Any changes that occur at the inputs have no effect on the state as long as the
clock is low. The inputs are fed directly through the output circuits, however,
with no intervening flip-flops. Thus a change to an input at any time can cause a
change in the output, regardless of whether the clock is high or low. In Figure
A-65, a change at either the x, or Xy inputs will propagate through to the z,z,z,
outputs independent of the level of the clock. This organization is referred to as
the Mealy model of an FSM.

In the Mealy model, the outputs change as soon as the inputs change, and so
there is no delay introduced by the clock. In the Moore model of an FSM, the
outputs are embedded in the state bits, and so a change at the outputs occurs on
the clock pulse after a change at the inputs. Both models are used by circuit
designers, and either model may be encountered outside of this textbook. In this

469

470

section we simply highlight the differences through an example.

An example of a Moore FSM is shown in Figure A-66. The FSM counts from 0

0— 00
X 01 4-to-1
1 —{ 10 MUX

4|>° 11] S)Q

00
101 4-to-1
D Q— z
10 MUX s
— 11 P 0
CLK

Figure A-66 A Moore binary counter FSM.

to 3 in binary and then repeats, similar to the modulo(4) counter shown in Fig-
ure A-58. The machine only counts when x = 1, otherwise the FSM maintains its
current state. Notice that the outputs are embedded in the state variables, and so
there is no direct path from the input to the outputs without an intervening
flip-flop.

The Mealy model might be considered to be more powerful than the Moore
model because in a single clock cycle, a change in the output of one FSM can
ripple to the input of another FSM, whose output then changes and ripples to
the next FSM, and so on. In the Moore model, lock-step synchronization is
strictly maintained, and so this ripple scenario does not occur. Spurious changes
in the output of an FSM thus have less influence on the rest of the circuit in the
Moore model. This simplifies circuit analysis and hardware debugging, and for
these situations, the Moore model may be preferred. In practice, both models are
used.

A single bit of information is stored in a D flip-flop. A group of N bits, making
up an N-bit word, can be stored in N D flip-flops organized as shown in Figure
A-67 for a four-bit word. We refer to such an arrangement of flip-flops as a “reg-
ister.” In this particular configuration, the data at inputs D; are loaded into the
register when the Write and Enable lines are high, synchronous with the clock.

Dy D, D, Do
ite (WR)— P 9] LD QM LD QT LD Q
==y | jo | iy
Y Y Y 1Y
| Q Q Q Q

Figure A-67 A four-bit register.
The contents of the register can be read at outputs Q; only if the Enable line is
high, since the tri-state buffers are in the electrically disconnected state when the
Enable line is low. We can simplify the illustration by just marking the inputs
and outputs as shown in Figure A-68.

—WR D3 D, D; Dy

—EN Q Q Q1 Q

Figure A-68 Abstract representation of a four-bit register.

A shift register copies the contents of each of its flip-flops to the next, while
accepting a new input at one end and “spilling” the contents at the other end,
which makes cascading possible. Consider the shift register shown in Figure
A-69. The register can shift to the left, shift to the right, accept a parallel load, or
remain unchanged, all synchronous with the clock. The parallel load and parallel
read capabilities allow the shift register to function as either a serial-to-parallel
converter or as a parallel-to-serial converter.

A counter is a different form of a register in which the output pattern sequences
through a range of binary numbers. Figure A-70 shows a configuration for a
modulo(8) counter that steps through the binary patterns: 000, 001, 010, 011,
100, 101, 110, 111 and then repeats. Three J-K flip-flops are placed in toggle
mode, and each clock input is ANDed with the Q output from the previous
stage, which successively halves the clock frequency. The result is a progression of

471

472

Co

>
D

Shift left output | Shift right
Shift right input input
| Shiftright
o output
[
Enable (EN)

Control| Function I I I |
e Shift right input —]

0 0 | Nochange shiftigtouput —f 02 P2PrPo L sniftright output
0 1 | Shiftleft =T — Shift right input
1 0 | Shiftright [Q3 Q Q1 Qo

1 1 | Padle load I I I |

Figure A-69 Internal layout and block diagram for a left/right shifter with parallel

read/write capabilities.

CLK

ENABLE— Q

— MOD(8) COUNTER

RESET —4 ?2 (l)l To Q

Timing Behavior

Figure A-70 A modulo(8) counter.

toggle flip-flops operating at rates that differ in powers of two, corresponding to

the sequence of binary patterns from 000 to 111.

Notice that we have added an active low asynchronous RESET line to the
counter, which resets it to 000, independent of the states of the clock or enable
lines. Except for the flip-flop in the least significant position, the remaining
flip-flops change state according to changes in states from their neighbors to the
right rather than synchronous with respect to the clock. It is similar in function
to the modulo(4) counter in Figure A-58, but is more easily extended to large
sizes because it is not treated like an ordinary FSM for design purposes, in which
all states are enumerated. It is, nevertheless, an FSM.

m SUMMARY

m Further Reading

Shannon’s contributions to switching algebra (Shannon, 1938; Shannon, 1949)
are based on the work of (Boole, 1854), and form the basis of switching theory as
we now know it. There is a vast number of contributions to Boolean algebra that
are too great to enumerate here. (Kohavi, 1978) is a good general reference for
CLUs and FSMs. A contribution by (Davidson, 1979) covers a method of
decomposing NAND based circuits, which is of interest because some computers

473

474

are composed entirely of NAND gates.

(Xilinx, 1992) covers the philosophy and practical aspects of the gate array
approach, and describes configurations of the Xilinx line of field programmable
gate arrays (FPGAs).

Some texts distinguish between a flip-flop and a latch. (Tanenbaum, 1990) dis-
tinguishes between the two by defining a flip-flop to be edge-triggered, whereas a
latch is level-triggered. This may be the correct definition, but in practice, the
terms are frequently interchanged and any distinction between the two is
obscured.

Boole, G., An Investigation of the Laws of Thought, Dover Publications, Inc., New
York, (1854).

Davidson, E. S., “An algorithm for NAND decomposition under network con-
straints,” IEEE Trans. Comp., C-18, (12), 1098, (1979).

Kohavi, Z., Switching and Finite Automata Theory, 2/e, McGraw-Hill, New York,
(1978).

Shannon, C. E., “A Symbolic Analysis of Relay and Switching Circuits,” Trans.
AIEE, 57, pp. 713-723, (1938).

Shannon, C. E., “The Synthesis of Two-Terminal Switching Circuits,” Bell Sys-
tem Technical Journal, 28, pp. 59-98, (1949).

Tanenbaum, A., Structured Computer Organization, 3/e, Prentice Hall, Engle-
wood Cliffs, New Jersey, (1990).

Xilinx, The Programmable Gate Array Data Book, Xilinx, Inc., 2100 Logic Drive,
San Jose, California, (1992).

® PROBLEMS

Figure A-13 shows an OR gate implemented with a NAND gate and
inverters, and Figure A-14 shows inverters implemented with NAND gates.
Show the logic diagram for an AND gate implemented entirely with NAND
gates.

Draw logic diagrams for each member of the computationally complete
set {AND, OR, NOT} using only the computationally complete set {NOR]}.

Given the logic circuit shown below, construct a truth table that describes
its behavior.

A
B F

C D“E :DT}G

Construct a truth table for a three-input XOR gate.

Compute the gate input count of the 4-to-2 priority encoder shown in
Figure A-32. Include the inverters in your count.

Design a circuit that implements function f below using AND, OR, and
NOT gates. f(A,B,C) = ABC+ ABC+ ABC

Design a circuit that implements function g below using AND, OR, and
NOT gates. Do not attempt to change the form of the equation.
¢(A,B,C,D,E) = A(BC +BC)+B(CD +E)

Are functions f and g shown below equivalent? Show how you arrive at
your answer.

f(A,B,C) = ABC + ABC ¢(A,B,C)=(ADOC)B

Write a Boolean equation that describes function F in the circuit shown
below. Put your answer in SOP form (without parentheses).

) >)+

EENSS———_—
C

A four-bit comparator is a component that takes two four-bit words as
inputs and produces a single bit of output. The output is a O if the words are
identical, and is a 1 otherwise. Design a four-bit comparator with any of the

475

476

logic gates you have seen in this appendix. Hint: Think of the four-bit com-
parator as four one-bit comparators combined in some fashion.

Redraw the circuit shown below so that the bubble matching is correct.
The overbars on the variable and function names indicate active low logic.

o=

Xg .
Active low
X,

P P OO
P O Fr O
O = O
= O O O

Use one 4-to-1 MUX to implement the majority function.

Use a 2-to-4 decoder and an OR gate to implement the XOR of two
inputs A and B.

Draw a logic diagram that uses a decoder and two OR gates to implement
functions F and G below. Be sure to label all lines in your diagram.

F(A,B,C)=ABC+ABC+ ABC + ABC
G(A, B,C) = ABC + ABC
Design a circuit using only 2-to-1 multiplexers that implements the func-
tion of an 8-to-1 multiplexer. Show your design in the form of a logic dia-
gram, and label all of the lines.

Since any combinational circuit can be constructed using only two-input

NAND gates, the two-input NAND is called a universal logic gate. The
two-input NOR is also a universal logic gate; however, AND and OR are not.
Since a two-input NAND can be constructed using only 4-to-1 MUXes (it
can be done with one 4-to-1 MUX), any combinational circuit can be con-
structed using only 4-to-1 MUXes. Consequently, the 4-to-1 MUX is also a
universal device. Show that the 1-to-2 DEMUX is a universal device by con-
structing a two-input NAND using only 1-to-2 DEMUXes. Draw a logic dia-
gram. Hint: Compose the NAND from an AND and an inverter each made
from 1-to-2 DEMUXGes.

A seven segment display, like you might find in a calculator, is shown
below. The seven segments are labeled a through g. Design a circuit that takes
as input a four-bit binary number and produces as output the control signal
for just the b segment (not the letter ‘b’, which has the 1011 code). A 0 at the
output turns the segment off, and a 1 turns the segment on. Show the truth
table and an implementation using a single MUX, and no other logic compo-
nents. Label all of the lines of the MUX.

I S I A O A
N I D O

a
| _d_ ¢ 0000 001 0010 0011 0100 0101 0110 0111

|*|||||||
g||||||||||I|

001 1010 1011 1100 1101 1110 1111

Implement function F shown in the truth table below using the 16-to-1

477

478

MUX shown. Label all of the lines, including the unmarked control line.

0000
0001
0010
0011
0100
0101
0110
0111 I

1000 F
1001
1010
1011
1100
1101
1110
1111

ABC

>
w
O
T

P PR, POOOO
PP, OORFRPF OO
P OPFP OFr OFr O
P OOOORFrEFrOo

A strict encoder takes 2N binary inputs, of which exactly one input is 1 at
any time and the remaining inputs are 0, and produces an N-bit coded binary
output that indicates which of the N inputs is high. For this problem, create a
truth table for a 4-to-2 strict encoder in which there are four inputs: A, B, C,
and D, and two outputs: X and Y. A and X are the most significant bits.

Consider a combinational logic circuit with three inputs a, b, and ¢, and
six outputs u, v, w, X, ¥, and z. The input is an unsigned number between 0
and 7, and the output is the square of the input. The most significant bit of
the input is a, and the most significant bit of the output is u. Create a truth
table for the six functions.

Consider the function f(a, b, c, d) that takes on the value 1 if and only if
the number of 1's in b and c¢ is greater than or equal to the number of 1’5 in a
and d.

(a) Write the truth table for function f.
(b) Use an 8-to-1 multiplexer to implement function f.

Create a truth table for a single digit ternary (base 3) comparator. The ter-
nary inputs are A and B which are each a single ternary digit wide. The output

Zis0for A<B, 1for A=B,and 2 for A > B. Using this truth table as a guide,
rewrite the truth table in binary using the assignment (0); — (00),, (1)3 —

(01),, and (2)3 — (10),.
Prove the consensus theorem for three variables using perfect induction.

Use the properties of Boolean algebra to prove DeMorgan’s theorem alge-
braically.

Can an S-R flip-flop be constructed with two cross-coupled XOR gates?
Explain your answer.

Modify the state transition diagram in the Vending Machine example to
provide more realistic behavior (that is, it returns all excess money) when a
quarter is inserted in state D.

Create a state transition diagram for an FSM that sorts two binary words
A and B, most significant bit first, onto two binary outputs GE and LT. If A is
greater than or equal to B, then A appears on the GE line and B appears on the
LT line. If B is greater than A, then B appears on the GE line and A appears on
the LT line.

Design a circuit that produces a 1 at the Z output when the input X
changes from O to 1 or from 1 to 0, and produces a zero at all other times. For
the initial state, assume a 0 was last seen at the input. For example, if the input
sequence is 00110 (from left to right), then the output sequence is 00101.
Show the state transition diagram, the state table, state assignment, and the
final circuit using MUXes.

Design an FSM that outputs a 1 when the last three inputs are 011 or
110. Just show the state table. Do not draw a circuit.

Design a finite state machine that takes two binary words X and Y in serial
form, least significant bit (LSB) first, and produces a 1-bit output Z that is
true when X >Y and is 0 for X Y. When the machine starts, assume that X =
Y. That is, Z produces 0’s until X >Y. A sample input sequence and the corre-

479

480

sponding output sequence are shown below.

X
10110—> _
Z,
corﬁgz;razlator 00110
11100—Y>

Create a state transition diagram for an FSM that sorts two ternary inputs,
most significant digit first, onto two ternary outputs GE and LT. If A is greater
than or equal to B, then A appears on the GE line and B appears on the LT
line, otherwise B appears on the GE line and A appears on the LT line. A sam-
ple input/output sequence is shown below. Use the ternary symbols 0, 1, and
2 when you label the arcs.

Input A: 02112012

Input B: 02120211
Output GE: 02120211

Output LT: 02112012
Time: 01234567

Create a state transition diagram for a machine that computes an even
parity bit z for its two-bit input x,xy. The machine outputs a 0 when all of the
previous two-bit inputs collectively have an even number of 15, and outputs a
1 otherwise. For the initial state, assume that the machine starts with even

parity.
Given the state transition diagram shown below,
(a) Create a state table.

(b) Design a circuit for the state machine described by your state table using
D flip-flop(s), a single decoder, and OR gates. For the state assignment, use
the bit pattern that corresponds to the position of each letter in the alphabet,
starting from 0. For example, A is at position 0, so the state assignment is 000;

481

B is at position 1, so the state assignment is 001, and so on.

ol () (O |
1/0 1/1

0/0

10 10

Redraw the circuit shown in Figure A-16 using AND and OR gates that
have fan-in = 2.

Suppose that you need to implement an N-input AND gate using only
three-input AND gates. What is the minimum number of gate delays required
to implement the N-input AND gate? A single AND gate has a gate delay of
1; two cascaded AND gates have a combined gate delay of 2, etc.

482

