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APPENDIX B: REDUCTION 
OF DIGITAL LOGIC

 

B.1 Reduction of Combinational Logic and Sequential Logic

 

In Appendix A, we focused primarily on the functional correctness of digital
logic circuits. Only a small amount of consideration was given to the possibility
that there may be more than one way to design a circuit, with some designs being
better than others in terms of component count (that is, the numbers and sizes of
the logic gates.)

In this appendix, we take a systematic approach to reducing the numbers of com-
ponents in a design. We first look at reducing the sizes of combinational logic
expressions, which loosely correspond to the numbers and sizes of the logic gates
in an implementation of a digital circuit. We then look at reducing the numbers
of states in finite state machines (FSMs), and explore a few areas of FSM design
that impact the numbers and sizes of logic gates in implementations of FSMs.

 

B.2 Reduction of Two-Level Expressions

 

It many cases the canonical 

 

sum-of-products

 

 (SOP) or 

 

product-of-sums

 

 (POS)
forms are not minimal in terms of their number and size. Since a smaller Boolean
equation translates to a lower gate input count in the target circuit, reduction of
the equation is an important consideration when circuit complexity is an issue.

Three methods of reducing Boolean equations are described in the sections that
follow: 

 

algebraic reduction

 

, 

 

Karnaugh map (K-Map) reduction

 

, and 

 

tabular
reduction

 

. The algebraic method forms the basis for the other two methods. It is
also the most abstract method, relying as it does on only the theorems of Boolean
algebra. 

The K-map and tabular methods are in fact pencil-and-paper implementations

 

 B
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of the algebraic method. We discuss them because they allow the student to visu-
alize the reduction process, and to thus have a better intuition for how the pro-
cess works. These manual processes can be used effectively to minimize functions
that have (about) six or fewer variables. For larger functions, a computer-adided
design (CAD) approach is generally more effective.

 

B.2.1

 

THE ALGEBRAIC METHOD

 

The algebraic method applies the properties of Boolean algebra that were intro-
duced in Section A.5 in a systematic manner to reduce expression size. Consider
the Boolean equation for the majority function, which is repeated below from
Appendix A:

 

(B.1)

 

The properties of Boolean algebra can be applied to reduce the equation to a
simpler form as shown in equations B.2 – B.4:

Distributive property

 

(B.2)

 

Complement property

 

(B.3)

 

Identity property

 

(B.4)

 

The corresponding circuit for Equation B.4 is shown in Figure B-1. In compari-
son with the majority circuit shown in Figure A-16, the gate count is reduced
from 8 to 6 and the gate input count is reduced from 19 to 13.

We can reduce Equation B.4 further. By applying the property of idempotence,
we obtain Equation B.5, in which we have reintroduced the minterm 

 

ABC

 

.

Idempotence property 

 

(B.5)

 

We can then apply the distributive, complement, and identity properties again
and obtain a simpler equation as shown below:

Distributive property  

 

(B.6)

 

Complement property 

 

(B.7)

F ABC ABC ABC ABC+ + +=

F ABC ABC AB C C+( )+ +=

F ABC ABC AB 1( )+ +=

F ABC ABC AB+ +=

F ABC ABC AB ABC+ + +=

F ABC AC B B+( ) AB+ +=

F ABC AC 1( ) AB+ +=
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Identity property  

 

(B.8)

 

Equation B.8 has a smaller gate input count of 11. We iterate this method one
more time and reduce the equation further as shown below:

Idempotence property 

 

(B.9)

 

Distributive property 

 

(B.10)

 

Complement property

 

(B.11)

 

Identity property

 

(B.12)

 

Equation B.12 is now in its minimal two-level form, and can be reduced no fur-
ther.

 

B.2.2

 

THE K-MAP METHOD

 

The K-map method is, in effect, a graphical technique that can be used to visual-
ize the minterms in a function along with variables that are common to them.
Variables that are common to more than one minterm are candidates for elimi-
nation, as discussed above. The basis of the K-map is the 

 

Venn diagram

 

, which
was originally devised to visualize concepts in set theory. 

F

A CB

Figure B-1    Reduced circuit for the majority function.

F ABC AC AB+ +=

F ABC AC AB ABC+ + +=

F BC A A+( ) AC AB+ +=

F BC 1( ) AC AB+ +=

F BC AC AB+ +=
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The Venn diagram for binary variables consists of a rectangle that represents the
binary universe in SOP form. A Venn diagram for three variables 

 

A

 

, 

 

B

 

, and 

 

C

 

 is
shown in Figure B-2. Within the universe is a circle for each variable. Within its

circle a variable has the value 1, and outside of its circle a variable has the value 0.
Intersections represent the minterms, as shown in the figure.

Adjacent shaded regions are candidates for reduction since they vary in exactly
one variable. In the figure, region 

 

ABC

 

 can be combined with each of the three
adjacent regions to produce a reduced form of the majority function. The K-map
is just a topological, or relationship-preserving transformation of the Venn dia-
gram. As in the Venn diagram, in the K-map, minterms that differ in exactly one
variable are placed next to each other.

A K-map for the majority function is shown in Figure B-3. Each cell in the

K-map corresponds to an entry in the truth table for the function, and since
there are eight entries in the truth table, there are eight cells in the corresponding
K-map. A 1 is placed in each cell that corresponds to a true entry. A 0 is entered
in each remaining cell, but can be omitted from the K-map for clarity as it is
here. The labeling along the top and left sides is arranged in a 

 

Gray code

 

, in
which exactly one variable changes between adjacent cells along each dimension.

ABC

ABC’ AB’CAB’C’

A’BC

A’BC’ A’B’C

A’B’C’
B

A

C

Figure B-2    A Venn diagram representation for 3 binary variables (left) and for the majority function

(right).

00 01 11 10

0

1

AB
C

1

11 1

Figure B-3    A K-map for the majority function.
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Adjacent 1’s in the K-map satisfy the condition needed to apply the complement
property of Boolean algebra. Since there are adjacent 1’s in the K-map shown in
Figure B-3, a reduction is possible. Groupings of adjacent cells are made into
rectangles in sizes that correspond to powers of 2, such as 1, 2, 4 and 8. These
groups are referred to as 

 

prime implicants

 

. As groups increase in size above a
1-group (a group with one member), more variables are eliminated from a Bool-
ean expression, and so the largest groups that can be obtained are used. In order
to maintain the adjacency property, the shapes of groups must always be rectan-
gular, and each group must contain a number of cells that corresponds to an
integral power of two.

We start the reduction process by creating groups for 1’s 

 

that can be contained in
no larger group

 

, and progress to larger groups until all cells with a 1 are covered at
least once. The adjacency criterion is crucial, since we are looking for groups of
minterms that differ in such a way that a reduction can be applied by using the
complement and identity properties of Boolean algebra, as in Equation B.13:

 

 

(B.13)

 

For the majority function, three groups of size two are made as shown in Figure

B-4. Every cell with a 1 has at least one neighboring cell with a 1, and so there are
no 1-groups. We look next at 2-groups, and find that all of the 1-cells are covered
by 2-groups. One of the cells is included in all three groups, which is allowed in
the reduction process by the property of idempotence. The complement prop-
erty eliminates the variable that differs between cells, and the resulting mini-
mized equation is obtained (Equation B.14):

 

(B.14)

 

The 

 

BC

 

 term is derived from the 2-group , which reduces to
 and then to 

 

BC

 

. The 

 

AC

 

 term is similarly derived from the 2-group
, and the 

 

AB

 

 term is similarly derived from the 2-group

ABC ABC+ AB C C+( ) AB 1( ) AB= = =

00 01 11 10

0

1

AB
C

1

11 1

Figure B-4    Adjacency groupings for the majority function.

M BC AC AB+ +=

ABC ABC+( )
BC A A+( )
ABC ABC+( )
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. The corresponding circuit is shown in Figure B-5. The gate

count is reduced from 8 to 4 as compared with the circuit shown in Figure A-16,
and the gate input count is reduced from 19 to 9.

Looking more closely at the method of starting with 1-cells that can be included
in no larger subgroups, consider what would happen if we started with the largest
groups first. Figure B-6 shows both approaches applied to the same K-map. The

reduction on the left is obtained by working with 1’s that can be included in no
larger subgroup, which is the method we have been using. Groupings are made
in the order indicated by the numbers. A total of four groups are obtained, each
of size two. The reduction on the right is obtained by starting with the largest
groups first. Five groups are thus obtained, one of size four and four of size two.

ABC ABC+( )

F

A B C

Figure B-5    Minimized AND-OR circuit for the majority function.

00 01 11

1

01

11

11

10
AB

1

CD

10

00

01 11

01

11

10
CD

10

00

00
AB

1

1

1

1

1

2

3

4

1

11

1

1

1

1

1

2

4

5
1

F  =   A B C  +   A C D  +
    A B C  +   A C D

F  =  B D  +   A B C  +   A C D  +
        A B C  +   A C D

3

Figure B-6    Minimal K-map grouping (left) and K-map grouping that is not minimal (right) of a

K-map.
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Thus, the minimal equation is not obtained if we start with the largest groups
first. Both equations shown in Figure B-6 describe the same function, and a logi-
cally correct circuit will be obtained in either case, however, one circuit will not
be produced from a minimized equation.

As another example, consider the K-map shown in Figure B-7. The edges of the

K-map wrap around horizontally and vertically, and the four corners are logically
adjacent. The corresponding minimized equation is shown in the figure.

 

Don’t cares

 

Now consider the K-maps shown in Figure B-8. The 

 

d

 

 entries denote 

 

don’t cares

 

,
which can be treated as 0’s or as 1’s, at our convenience. A don’t care represents a
condition that cannot arise during operation. For example, if 

 

X

 

=1 represents the
condition in which an elevator is on the ground floor, and 

 

Y

 

=1 represents the
condition in which the elevator is on the top floor, then 

 

X

 

 and 

 

Y

 

 will not both be
1 at the same time, although they may both be 0 at the same time. Thus, a truth
table entry for an elevator function that corresponds to 

 

X

 

 = 

 

Y

 

 = 1 would be
marked as a don’t care.

In Figure B-8, a more complex function is shown in which two different results
are obtained from applying the same minimization process. The K-map on the
left treats the top right don’t care as a 1 and the bottom left don’t care as a 0. The
K-map on the right treats the top right don’t care as a 0 and the bottom left don’t
care as a 1. Both K-maps result in minimized Boolean equations of the same size,

00 01 11

1

1

1

01

11

1

1

1

1

1

10
AB

1

CD

00

10

F = B C D  +  B D  +  A B

Figure B-7    The corners of a K-map are logically adjacent.
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and so it is possible to have more than one minimal expression for a Boolean
function. In practice, one equation may be preferred over another, possibly in
order to reduce the fan-out for one of the variables, or to take advantage of shar-
ing minterms with other functions.

 

Higher Dimensional Maps

 

Figure B-9 shows a K-map in five variables. Each cell is adjacent to five others,

and in order to maintain the inverse property for adjacent cells, the map on the
left overlays the map on the right, creating a three-dimensional structure. Group-
ings are now made in three dimensions as shown in the figure. Since the

00 01 11

1

01

11

11

10
AB

1

CD

10 d

00 d

F = B C D  +  B D

01 11

1

01

11

11

10

1

CD

10 d

00 d

00
AB

F = A B D  +  B D

1 1

Figure B-8    Two different minimized equations are produced from the same K-map.

01 11

001

011

10
CDE

010

000

00
AB

01 11

101

111

10
CDE

110

100

00
AB

1 1

1 1

1 11 1

1 1

11

F  =  A C D E  +  A B D E  +  B E

Figure B-9    A K-map in five variables.
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three-dimensional structure is mapped onto a two-dimensional page, some visu-
alization is required on the part of the reader.

A six-variable K-map is shown in Figure B-10, in which the maps are overlaid

four deep, in the order: top-left, top-right, bottom-right, and bottom left.
K-maps can be extended to higher dimensions for seven or more variables, but
the visualization and the tedium tend to dominate the process. An algorithmic
approach for more than four variables that lends itself to a simple implementa-
tion on a computer is described in Section B.2.3.

 

Multilevel circuits

 

It should be emphasized that a K-map reduces the size of a two-level expression,
as measured by the number and sizes of the terms. This process does not neces-
sarily produce a minimal form for multilevel circuits. For example, Equation
B.14 is in its minimal two-level form, since only two levels of logic are used in its
representation: three ANDed collections of variables (product terms) that are

001 011

001

011

010
DEF

010

000

000
ABC

001 011

101

111

010
DEF

110

100

000
ABC

101 111

001

011

110
DEF

010

000

100
ABC

101 111

101

111

110
DEF

110

100

100
ABC

1

11

1

1

1 1

1

G  =   B C E F  +   A B D E

Figure B-10    A K-map in six variables.
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ORed together. The corresponding logic diagram that is shown in Figure B-5 has
a gate-input count of 9. A three-level form can be created by factoring out one of
the variables algebraically, such as A, as shown in Equation B.15.

 

(B.15)

 

The corresponding logic diagram that is shown in Figure B-11 has a gate input

count of 8, and thus a less complex circuit is realized by using a multilevel
approach. There is now a greater delay between the inputs and the outputs, how-
ever, and so we might create another measure of circuit complexity: the 

 

gate
delay. A two-level circuit has a gate delay of two because there are two logic gates
on the longest path from an input to an output. The circuit shown in Figure
B-11 has a gate delay of three.

Although there are techniques that aid the circuit designer in discovering
trade-offs between circuit depth and gate input count, the development of algo-
rithms that cover the space of possible alternatives in reasonable time is only a
partially solved problem.

Map-Entered Variables

A simplified form for representing a function on a K-map is possible by allowing
variables to be entered in the cells. For example, consider the four-variable
K-map shown in Figure B-12. Only eight cells are used even though there are
four variables, which would normally require 24 = 16 cells. The map-entered
variable D is treated as a 1 for the purpose of grouping, which for this case
results in a one-group since there are no adjacent 1’s to the D cell. The resulting

M BC A B C+( )+=

M

A B C

Figure B-11    A three-level circuit implements the majority function with a gate-input count of 8.
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reduced equation is shown in the figure. Notice that the variable D appears in the
minterm , since D can assume a value of 0 or 1 even though we treated D
as a 1 for the purpose of forming the one-group.

The general procedure for producing a reduced expression from a K-map with
map-entered variables is to first obtain an expression for the 1-cells while treating
the map-entered variables as 0’s. Minterms are then added for each variable while
treating 1’s as don’t cares since the 1’s have already been covered. The process
continues until all variables are covered.

Consider the map shown in Figure B-13, in which D, E, and  are map-entered

variables, and d represents a don’t care. The 1’s are considered first, which pro-
duces the term BC. Variable D is considered next, which produces the term

. Variable E is considered next, which produces the term BE. Finally, vari-
able  is considered, which produces the term . Notice that a
map-entered variable and its complement are considered separately, as for E in
this example. Equation B.16 shows the reduced form:

(B.16)

00 01 11 10

0

1

AB
C

11

D

F  =  B C  +  A B C D

Figure B-12    An example of a K-map with a map-entered variable D.

ABCD

00 01 11 10

0

1

AB
C

11

D d E E

Figure B-13    A K-map with two map-entered variables D and E.

E

ACD
E ABCE

F BC ACD BE ABCE+ + +=



494

B.2.3 THE TABULAR METHOD

An automated approach to reducing Boolean expressions is commonly used for
single and multiple output functions. The tabular method, also known as the
Quine-McCluskey method, successively forms Boolean cross products among
groups of terms that differ in one variable, and then uses the smallest set of
reduced terms to cover the functions. This process is easier than the map method
to implement on a computer, and an extension of the method allows terms to be
shared among functions. 

Reduction of Single Functions

The truth table shown in Figure B-14 describes a function F in four variables A,

B, C, and D, and includes three don’t cares. The tabular reduction process begins
by grouping minterms for which F is nonzero according to the number of 1’s in
each minterm. Don’t care conditions are considered to be nonzero for this pro-
cess. Minterm 0000 contains no 1’s and is in its own group, as shown in Figure
B-15a. Minterms 0001, 0010, 0100, and 1000 all contain a single 1, but only
minterm 0001 has a nonzero entry and so it forms another group.

The next group has two 1’s in each minterm, and there are six possible minterms

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

C D

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

B

d
1
0
1
0
1
1
1
0
0
1
d
0
1
0
d

F

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A

Figure B-14    A truth table representation of a function with don’t cares.



495

that can belong to this group. Only minterms 0011, 0101, 0110, and 1010 have
nonzero entries, and so they comprise this group. There are three nonzero entries
in the next group, which has three 1’s in each minterm. The nonzero minterms
are 0111, 1011, and 1110. Finally, there is one nonzero entry that contains four
1’s, and the corresponding minterm makes up the last group. For larger truth
tables, the process continues until all nonzero entries are covered. The groups are
organized so that adjacent groups differ in the number of 1’s by one, as shown in
Figure B-15a.

The next step in the reduction process is to form a consensus (the logical form of
a cross product) between each pair of adjacent groups for all terms that differ in
only one variable. The general form of the consensus theorem is restated from
Appendix A below:

(B.17)

The term YZ is redundant, since it is covered by the remaining terms, and so it
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√
√
√
√
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√
√
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√
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√
√
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C D

_
_
1
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_
_
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*
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*

Initial setup After first
reduction

After second
reduction

(a)

(b)

(c)

Figure B-15    The tabular reduction process.

XY XZ YZ+ + XY XZ+=
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can be eliminated. Algebraically, we can prove the theorem as shown below:

The consensus theorem also has a dual form:

(B.18)

The idea of applying consensus in tabular reduction is to take advantage of the
inverse property of Boolean algebra, similar to the way we did for K-maps in the
previous section. For example, 0000 and 0001 differ in variable D, so 000_ is
listed at the top of the reduced table shown in Figure B-15b. The underscore
marks the position of the variable that has been eliminated, which is D for this
case. Minterms 0000 and 0001 in Figure B-15a are marked with checks to indi-
cate that they are now covered in the reduced table.

After every term in the first group is crossed with every term in the second group,
we then move on to form a consensus between terms in the second and third
groups. Note that it is possible that some terms cannot be combined into a
smaller term because they differ in more than one variable. For example, terms
0001 and 0011 combine into the smaller term 00_1 as shown in the top of the
second group in Figure B-15b, but terms 0001 and 0110 cannot be combined
because they differ in three variables.

Once a term is marked with a check, it can still be used in the reduction process
by the property of idempotence. The objective in this step of the process is to dis-
cover all of the possible reduced terms, so that we can find the smallest set of
terms that covers the function in a later step.

The process continues for the remaining groups. Any term that is not covered
after all consensus groupings are made is marked with an asterisk to indicate that
it is a prime implicant. After the first reduction is made for this example, all of
the minterms shown in Figure B-15a are covered so there are no prime impli-
cants at this point.

XY + XZ + YZ = XY + XZ + YZ(X + X)

= XY + XZ + XYZ + XYZ
= XY + XYZ + XZ + XYZ
= XY (1 + Z) + XZ(1 + Y )

= XY + XZ

X Y+( ) X Z+( ) Y Z+( ) X Y+( ) X Z+( )=
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Now that the first reduction is made, we can start on the next reduction. In order
for two reduced terms to be combined, they must again differ in exactly one vari-
able. The underscores must line up, and only one of the remaining variables can
differ. The first entry shown in Figure B-15b has an underscore in the rightmost
field, which does not coincide with any term in the next group, so an asterisk is
placed next to it indicating that it can be reduced no further and is therefore a
prime implicant. We continue by moving on to the second and third groups of
Figure B-15b. Terms 00_1 and 01_1 combine to form reduced term 0_._1 in the
table shown in Figure B-15c. The process continues until the second reduction is
completed, which is shown in Figure B-15c.

In constructing the reduced table shown in Figure B-15c, the prime implicants
from the previously constructed table (Figure B-15b) are not included. The pro-
cess continues for additional reductions until only prime implicants remain. For
this example, the process stops after the second reduction when the three terms
become prime implicants as shown in Figure B-15c.

Taken as a whole, the prime implicants form a set that completely covers the
function, although not necessarily minimally. In order to obtain a minimal cov-
ering set, a table of choice is constructed as shown in Figure B-16. Each prime

implicant has a row in the table of choice. The columns represent minterms in
the original function that must be covered. Don’t care conditions do not need to
be covered, and are not listed.

A check is placed in each box that corresponds to a prime implicant that covers a
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_
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√ √

√ √ √

 

*
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*

Figure B-16    Table of choice.
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minterm. For example, prime implicant 000_ covers minterm 0001, so a check is
placed in the corresponding box. Some prime implicants cover several minterms,
as for 0_ _1 which covers four minterms. After all boxes are considered, columns
that contain a single check are identified. A single check in a column means that
only one prime implicant covers the minterm, and the corresponding prime
implicant that covers the minterm is marked with an asterisk to indicate that it is
essential.

Essential prime implicants cannot be eliminated, and they must be included in
the reduced equation for the function. For this example, prime implicants 011_,
101_, and _1_1 are essential. An essential prime implicant may cover more than
one minterm, and so a reduced table of choice is created in which the essential
prime implicants and the minterms they cover are removed, as shown in Figure
B-17. The reduced table of choice may also have essential prime implicants, in

which case a second reduced table of choice is created, and the process continues
until the final reduced table of choice has only nonessential prime implicants.

The prime implicants that remain in the reduced table of choice form the eligi-
ble set, from which a minimal subset is obtained that covers the remaining min-
terms. As shown in Figure B-17, there are two sets of prime implicants that cover
the two remaining minterms. Since Set 2 has the fewest terms, we choose that set
and obtain a minimized equation for F, which is made up of essential prime
implicants and the eligible prime implicants in Set 2:

(B.19)

Instead of using visual inspection to obtain a covering set from the eligible set,
the process can be carried out algorithmically. The process starts by assigning a
variable to each of the prime implicants in the eligible set as shown in Figure
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√
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Y

Z √

√

Figure B-17    Reduced table of choice.

F ABC ABC BD AD+ + +=
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B-17. A logical expression is written for each column in the reduced table of
choice as shown below:

Column Logical Sums

 0001  (X + Y)

 0011  (Y + Z)

In order to find a set that completely covers the function, prime implicants are
grouped so that there is at least one check in each column. This means that the
following relation must hold, in which G represents the terms in the reduced
table of choice:

Applying the properties of Boolean algebra yields:

Each of the product terms in this equation represents a set of prime implicants
that covers the terms in the reduced table of choice. The smallest product term
(Y) represents the smallest set of prime implicants (0 _ _ 1) that covers the
remaining terms. The same final equation is produced as before:

(B.20)

Reduction of Multiple Functions

The tabular reduction method reduces a single Boolean function. When there is
more than one function that use the same variables, then it may be possible to
share terms, resulting in a smaller collective size of the equations. The method
described here forms an intersection among all possible combinations of shared
terms, and then selects the smallest set that covers all of the functions.

As an example, consider the truth table shown in Figure B-18 that represents
three functions in three variables. The notation mi denotes minterms according
to the indexing shown in the table.

The canonical (unreduced) form of the Boolean equations is:

G X Y+( ) Y Z+( )=

G X Y+( ) Y Z+( ) XY XZ Y YZ+ + + XZ Y+= = =

F ABC ABC BD AD+ + +=
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F0(A,B,C) = m0 + m3 + m7

F1(A,B,C) = m1 + m3 + m4 + m6 + m7

F2(A,B,C) = m2 + m3 + m6 + m7

An intersection is made for every combination of functions as shown below:

F0,1(A,B,C)= m3 + m7

F0,2(A,B,C)= m3 + m7

F1,2(A,B,C)= m3 + m6 + m7

F0,1,2(A,B,C)= m3 + m7

Using the tabular reduction method described in the previous section, the fol-
lowing prime implicants are obtained:

Function Prime Implicant

F0 000, _11
F1 0_1, 1_0, _11, 11_
F2 _1_
F0,1 _11
F0,2 _11
F1,2 _11, 11_

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

1
0
0
1
0
0
0
1

F0

0
1
0
1
1
0
1
1

F1

0
0
1
1
0
0
1
1

F2

m0

m1

m2

m3

m4

m5

m6

m7

Minterm

Figure B-18    A truth table for three functions in three variables.
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F0,1,2 _11

The list of prime implicants is reduced by eliminating those prime implicants in
functions that are covered by higher order functions. For example, _11 appears
in F0,1,2, thus it does not need to be included in the remaining functions. Simi-
larly, 11_ appears in F1,2, and does not need to appear in F1 or in F2 (for this
case, it does not appear as a prime implicant in F2 anyway.) Continuing in this
manner, a reduced set of prime implicants is obtained:

Function Prime Implicant

F0 000
F1 0_1, 1_0
F2 _1_
F0,1 none
F0,2 none
F1,2 11_
F0,1,2 _11

A multiple output table of choice is then constructed as shown in Figure B-19.

The rows correspond to the prime implicants, and the columns correspond to
the minterms that must be covered for each function. Portions of rows are
blocked out where prime implicants from one function cannot be used to cover
another. For example, prime implicant 000 was obtained from function F0, and
therefore cannot be used to cover a minterm in F1 or F2, and so these regions are

0

0

1

_

1

_

0

_

_

1

1

1

0

1

0

_

_

1

Prime
Implicants

√

m0   m3   m7 m1    m3    m4    m6   m7 m2    m3   m6    m7

F0(A,B,C) F1(A,B,C) F2(A,B,C)Min-
terms

F0

F1

F1

F2

F1,2

F0,1,2

√ √

√ √

√ √ √ √

√ √

√√ √ √ √ √

*

*

*

*

 

*

√ √

Figure B-19    A multiple output table of choice.
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blocked out. If, in fact, a prime implicant in F0 can be used to cover a minterm
in one of the remaining functions, then it will appear in a higher order function
such as F0,1 or F0,1,2.

The minimal form for the output equations is obtained in a manner similar to
the tabular reduction process. We start by finding all of the essential prime impli-
cants. For example, minterm m0 in function F0 is covered only by prime impli-
cant 000, and thus 000 is essential. The row containing 000 is then removed
from the table and all columns that contain a check mark in the row are also
deleted. The process continues until either all functions are covered or until only
nonessential prime implicants remain, in which case the smallest set of nonessen-
tial prime implicants that are needed to cover the remaining functions is
obtained using the method described in the previous section.

The essential prime implicants are marked with asterisks in Figure B-19. For this
case, only one nonessential prime implicant (11_) remains, but since all min-
terms are covered by the essential prime implicants, there is no need to construct
a reduced table. The corresponding reduced equations are:

F0(A,B,C)= 

F1(A,B,C)= 

F2(A,B,C)= 

B.2.4 LOGIC REDUCTION: EFFECT ON SPEED AND PERFORMANCE

Up to this point, we have largely ignored physical characteristics that affect per-
formance, and have focused entirely on organizational issues such as circuit
depth and gate count. In this section, we explore a few practical considerations of
digital logic.

Switching speed: The propagation delay (latency) between the inputs and output
of a logic gate is a continuous effect, even though we considered propagation
delay to be negligible in the early part of Appendix A. A change at an input to a
logic gate is also a continuous effect. In Figure B-20, an input to a NOT gate has
a finite transition time, which is measured as the time between the 10% and
90% points on the waveform. This is referred to as the rise time for a rising signal
and the fall time for a falling signal.

ABC BC+

AC AC BC+ +

B
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The propagation delay is the time between the 50% transitions on the input and
output waveforms. The propagation delay is influenced by a number of parame-
ters, and power is one parameter over which we have a good deal of control. As
power consumption increases, propagation delay decreases, up to a limit. A rule
of thumb is that the product of power consumption and the propagation delay
for a logic gate stays roughly the same. Although we generally want fast logic, we
do not want to operate with a high power dissipation because the consumed
power manifests itself as heat that must be removed to maintain a safe and reli-
able operating condition.

In the complementary metal-oxide semiconductor (CMOS) logic family, power
dissipation scales with speed. At a switching rate of 1 MHz, the power dissipa-
tion of a CMOS gate is about 1 mW. At this rate of power dissipation, 10,000
CMOS logic gates dissipate 10,000 gates × 1mW/gate = 10W, which is at the
limit of heat removal for a single integrated circuit using conventional
approaches (for a 1 cm2 chip).

Single CMOS chips can have on the order of 107 logic gates, however, and oper-
ate at rates up to several hundred MHz. This gate count and speed are achieved
partially by increasing the chip size, although this accounts for little more than a
factor of 10. The key to achieving such a high component count and switching
speed while managing power dissipation is to switch only a fraction of the logic
gates at any time, which luckily is the most typical operating mode for an inte-
grated circuit.

Circuit depth: The latency between the inputs and outputs of a circuit is governed

+5V

0V

+5V

0V

10%

90%

Transition Time

90%

10%

50%
(2.5V)

50%
(2.5V)

Propagation Delay

Transition Time

Time

A NOT gate 
input changes 
from 1 to 0

The NOT gate 
output changes 
from 0 to 1

(Fall Time)

(Latency)

(Rise Time)

Figure B-20    Propagation delay for a NOT gate (adapted from [Hamacher et al., 1990]).
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by the number of logic gates on the longest path from any input to any output.
This is known as circuit depth. In general, a circuit with a small circuit depth
operates more quickly than a circuit with a large circuit depth. There are a num-
ber of ways to reduce circuit depth that involve increasing the complexity of
some other parameter. We look at one way of making this trade-off here.

In Appendix A, we used a MUX to implement the majority function. Now con-
sider using a four variable MUX to implement Equation B.21 shown below. The
equation is in two-level form, because only two levels of logic are used in its rep-
resentation: six AND terms that are ORed together. A single MUX can imple-
ment this function, which is shown in the left side of Figure B-21. The

corresponding circuit depth is two (that is, the gate-level configuration of the
inside of the MUX has two gate delays). If we factor out A and B then we obtain
the four-level Equation B.22, and the corresponding four-level circuit shown in
the right side of Figure B-21. 

 (B.21)

 (B.22)

The gate input count of a 4-to-1 MUX is 18 as taken from Figure A-23 (includ-
ing inverters), so the gate input count of the decomposed MUX circuit is 3×18 =
54. A single 16-to-1 MUX has a gate input count of 100. The 4-to-1 MUX
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0
0
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1
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0
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1
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0

B C + B C

B C +  B C

Figure B-21    A four-variable function implemented with a 16-to-1 MUX (left) and with 4-to-1

MUXes (right).
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implementation has a circuit depth of four (not including inverters) while the
16-to-1 MUX implementation has a circuit depth of two. We have thus reduced
the overall circuit complexity at the expense of an increase in the circuit depth.

Although there are techniques that aid the circuit designer in discovering
trade-offs between circuit complexity and circuit depth, the development of
algorithms that cover the space of possible alternatives in reasonable time is only
a partially solved problem. 

Fan-in vs. circuit depth: Suppose that we need a four-input OR gate as used in
Figure A-23, but only two-input OR gates are available. What should we do?
This is a common practical problem that is encountered in a variety of design sit-
uations. The associative property of Boolean algebra can be used to decompose
the OR gate that has a fan-in of four into a configuration of OR gates that each
have a fan-in of two as shown in Figure B-22. In general, the decomposition of

the four-input OR gate should be performed in balanced tree fashion in order to
reduce circuit depth. A degenerate tree can also be used as shown in Figure B-22,
which produces a functionally equivalent circuit with the same number of logic
gates as the balanced tree, but results in a maximum circuit depth.

A + B + C + D

A BCD

Associative law of Boolean algebra:

Initial high fan-in gate

Balanced tree

A B CD

(A +  B) + (C +  D)

Degenerate tree

A B C D

A  +   B  +   C  +   D  =   (A +  B)  +   (C +  D) ((A + B) + C) + D

Figure B-22    A logic gate with a fan-in of four is decomposed into logically equivalent configurations

of logic gates with fan-ins of two.
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Although it is important to reduce circuit depth in order to decrease the latency
between the inputs and the outputs, one reason for preferring the degenerate tree
to the balanced tree is that the degenerate tree has a minimum cross sectional
diameter at each stage, which makes it easy to split the tree into pieces that are
spread over a number of separate circuits. This mirrors a practical situation
encountered in packaging digital circuits. The depth of the balanced tree is

 logic gates for an N-input gate mapped to logic gates with a fan-in of
F, and the depth of the degenerate tree is  logic gates for an N-input gate
mapped to logic gates with a fan-in of F.

In theory, any binary function can be realized in two levels of logic gates given an
arbitrarily large stage of AND gates followed by an arbitrarily large stage of OR
gates, both having arbitrarily large fan-in and fan-out. For example, an entire
computer program can be compiled in just two gate levels if it is presented in
parallel to a Boolean circuit that has an AND stage followed by an OR stage that
is designed to implement this function. Such a circuit would be prohibitively
large, however, since every possible combination of inputs must be considered.

Fan-outs larger than about 10 are too costly to implement in many logic families
due to the sacrifice in performance, as it is similar to filling 10 or more leaky
buckets from a single faucet. Boolean algebra for two-level expressions is still
used to describe complex digital circuits with high fan-outs, however, and then
the two-level Boolean expressions are transformed into multilevel expressions
that conform to the fan-in and fan-out limitations of the technology. Optimal
fan-in and fan-out are argued to be e ≅  2.7 (Mead and Conway, 1980) in terms
of transistor stepping size for bringing a signal from an integrated circuit (IC) to
a pin of the IC package. The derivation of that result is based on capacitance of
bonding pads, signal rise times, and other considerations. The result cannot be
applied to all aspects of computing since it does not take into account overall
performance, which may create local variations that violate the e rule dramati-
cally. Electronic digital circuits typically use fan-ins and fan-outs of between 2
and 10.

B.3 State Reduction
In Appendix A, we explored a method of designing an FSM without considering
that there may exist a functionally equivalent machine with fewer states. In this
section, we focus on reducing the number of states. We begin with a description
of an FSM that has some number of states, and then we hypothesize that a func-
tionally equivalent machine exists that contains a single state. We apply all com-

logF N( )
N 1–
F 1–
-------------
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binations of inputs to the hypothesized machine, and observe the outputs. If the
FSM produces a different output for the same input combination at different
times, then there are at least two states that are distinguishable, which are there-
fore not equivalent. The distinguishable states are placed in separate groups, and
the process continues until no further distinctions can be made. If any remaining
groups have more than one state, then those states are equivalent and a smaller
equivalent machine can be constructed in which each group is collapsed into a
single state.

As an example, consider state machine M0 described by the state table shown in
Figure B-23. We begin the reduction process by hypothesizing that all five states

can be reduced to a single state, obtaining partition P0 for a new machine M1:

P0 = (ABCDE)

We then apply a single input to the original machine M0 and observe the out-
puts. When M0 is in state A, and an input of 0 is applied, then the output is 0.
When the machine is in state A and an input of 1 is applied, then the output is 1.
States B and E behave similarly, but states C and D produce outputs of 1 and 0
for inputs of 0 and 1, respectively. Thus, we know that states A, B, and E can be
distinguished from states C and D, and we obtain a new partition P1:

P1 = (ABE) (CD)

After a single input is applied to M0, we know that the machine will be in either
the ABE group or the CD group. We now need to observe the behavior of the
machine from its new state. One way to do this is to enumerate the set of possi-
ble next states in a tree as shown in Figure B-24. The process of constructing the
tree begins by listing all of the states in the same partition. For machine M0, the

X

0 1

A C/0 E/1

Present state

Input

B

C

D

E

D/0 E/1

C/1 B/0

C/1 A/0

A/0 C/1

Figure B-23    Description of state machine M0 to be reduced.
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initial partition (ABCDE) is shown at the root of the tree. After a 0 is applied at
the input to M0, the next state will be one of C, D, C, C, or A for an initial state
of A, B, C, D, or E, respectively. This is shown as the (CDA)(CC) partition in the
0 side of the tree, down one ply (one level) from the root. The output produced
by the (CDA) group is different from the output produced by the (CC) group,
and so their corresponding initial states are distinguishable. The corresponding
states that are distinguished are the groups (ABE) and (CD), which form the par-
tition (ABE)(CD) as shown.

Similarly, after a 1 is applied at the input to M0, the next state will be one of E, E,
B, A, or C for an initial state of A, B, C, D, or E, respectively. This is shown on
the right side of the tree. To form the next ply, we look at the (CDA) and (CC)
groups separately. When a 0 is applied at the input when M0 is in any of states C,
D, or A, then the outputs will be the same for states C and D (the output is a 1,
and the next states are C and C) but will be different for state A (the output is a
0, and the next state is C). This is shown as (CC)(C) on the 0,0 path from the
root. 

Similarly, when a 0 is applied at the input when M0 is in either of states C or D,
then the outputs are the same, and the set of target states are (CC)(C)(CC) on the
0,0 path from the root as shown, which corresponds to a partition on the initial

(ABCDE)

(CDA)(CC)
(ABE)(CD)

(CC)(C)(CC)
(AB)(E)(CD)*

(BA)(E)(BB)
(AB)(E)(CD)

(DC)(A)(DD)
(AB)(E)(CD)

(EE)(C)(EE)
(AB)(E)(CD)*

(CC)(C)(CC) (AB)(E)(AA)
(AB)(E)(CD)

(CD)(A)(CC) (EE)(C)(EE)

(EEC)(BA)
(ABE)(CD)

(AA)(C)(DC)
(AB)(E)(CD)

(CC)(B)(EE)
(AB)(E)(CD)*

(CC)(C)(CC) (EE)(B)(AB)

0 1

0 10 1

0 10 1

0 1

0 1

Next states
Distinguished states

Figure B-24    A next state tree for M0.
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states of (AB)(E)(CD) if we trace back to the root. Thus, at this point, A is indis-
tinguishable from B, and C is indistinguishable from D, but each parenthesized
group can be distinguished from each other if we apply the sequence 0,0 to M0
and observe the outputs, regardless of the initial state.

Continuing in this manner, the tree is expanded until no finer partitions can be
created. For example, when a partition contains a group of states that can no
longer be distinguished, as for (CC)(C)(CC), then an asterisk is placed adjacent
to the partition for the corresponding initial states and the tree is not expanded
further from that point. The tree shown in Figure B-24 is expanded beyond this
point only to illustrate various situations that can arise.

If a partition is created that is visited elsewhere in the tree, then a slash is drawn
through it and the tree is not expanded from that point. For purposes of compar-
ing similar partitions, (CD)(A)(CC) is considered to be the same as (CD)(A)(C),
and (AA)(C)(DC) is considered to be the same as (A)(C)(DC), which is the same
as (DC)(A)(C) and (CD)(A)(C). Thus the (CD)(A)(CC) and (AA)(C)(DC) parti-
tions are considered to be the same. After the tree is constructed, the partitions
with asterisks expose the indistinguishable states. Each group of parentheses in
an asterisk partition identifies a group of indistinguishable states. For machine
M0, states A and B are indistinguishable, and states C and D are indistinguish-
able. Thus, we can construct a functionally equivalent machine to M0 that con-
tains only three states, in which A and B are combined into a single state and C
and D are combined into a single state.

The process of constructing the next state tree is laborious because of its potential
size, but we use it here in order to understand a simpler method. Rather than
construct the entire tree, we can simply observe that once we have the first parti-
tion P1, the next partition can be constructing by looking at the next states for
each group and noting that if two states within a group have next states that are
in different groups, then they are distinguishable since the resulting outputs will
eventually differ. This can be shown by constructing the corresponding distin-
guishing tree. Starting with P1 for M0, we observe that states A and B have next
states C and D for an input of 0, and have a next state of E for an input of 1, and
so A and B are grouped together in the next partition. State E, however, has next
states of A and C for inputs of 0 and 1, respectively, which differ from the next
states for A and B, and thus state E is distinguishable from states A and B. Con-
tinuing for the (CD) group of P1, the next partition is obtained as shown below:

P2 = (AB) (CD) (E)
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After applying the method for another iteration, the partition repeats, which is a
condition for stopping the process:

P3 = (AB) (CD) (E) √

No further distinctions can be made at this point, and the resulting machine M1
has three states in its reduced form. If we make the assignment A’ = AB, B’ =
CD, and C’ = E, in which the prime symbols mark the states for machine M1,
then a reduced state table can be created as shown in Figure B-25.

B.3.1 THE STATE ASSIGNMENT PROBLEM

It may be the case that different state assignments for the same machine result in
different implementations. For example, consider machine M2 shown in the left
side of Figure B-26. Two different state assignments are shown. State assignment

SA0 is a simple numerical ordering of A→00, B→01, C→10, and D→11. State
assignment SA1 is the same as SA0 except that the assignments for C and D are
interchanged. We consider an implementation of M2 using state assignment SA0
with AND, OR, and NOT gates, and apply K-map reduction to reduce the sizes
of the equations. Figure B-27 shows the results of reducing the next state func-

X

0 1

AB: A' B'/0 C'/1

Current state

Input

CD: B'

E: C'

B'/1 A'/0

A'/0 B'/1

Figure B-25    A reduced state table for machine M1.
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A B/1 A/1

B C/0 D/1

C C/0 D/0

D B/1 A/0

Machine M2

Input X

0 1

A: 00 01/1 00/1

B: 01 10/0 11/1

C: 10 10/0 11/0

D: 11 01/1 00/0

State assignment SA0

S0S1

Input X

0 1

A: 00 01/1 00/1

B: 01 11/0 10/1

C: 11 11/0 10/0

D: 10 01/1 00/0

State assignment SA1

S0S1

Figure B-26    Two state assignments for machine M2.
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tions S0 and S1 and the output function Z. A corresponding circuit will have a
gate input count of 29 as measured by counting the number of variables and the
number of terms in the equations (note that one of the terms is shared, and is
counted just once). If we use state assignment SA1 instead, then we will obtain a
gate input count of 6 as shown in Figure B-28. (s0 and s1 do not contribute to the

gate input count because they do not feed into logic gates.)

State assignment SA1 is clearly better than SA0 in terms of gate input count, but
may not be better with regard to other criteria. For example, if an implementa-
tion is made with 8-to-1 MUXes, then the gate input count will be the same for
SA0 and SA1. A further consideration is that it is not an easy process to find the
best assignment for any one criterion. In fact, better gate input counts may be
possible by increasing the number of state bits for some cases.
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Figure B-27    Boolean equations for machine M2 using state assignment SA0.
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Figure B-28    Boolean equations for machine M2 using state assignment SA1.
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REDUCTION EXAMPLE: A SEQUENCE DETEC-
TOR

In this section, we tie together the reduction methods described in the previous
sections. The machine we would like to design outputs a 1 when exactly two of
the last three inputs are 1 (this machine appeared in an example in Appendix A).
An input sequence of 011011100 produces an output sequence of 001111010.
There is one serial input line, and we can assume that initially no inputs have
been seen.

We start by constructing a state transition diagram, as shown in Figure B-29.

There are eight possible three-bit sequences that our machine will observe: 000,
001, 010, 011, 100, 101, 110, and 111. State A is the initial state, in which we
assume that no inputs have yet been seen. In states B and C, we have seen only
one input, so we cannot yet output a 1. In states D, E, F, and G we have only
seen two inputs, so we cannot yet output a 1, even though we have seen two 1’s
at the input when we enter state G. The machine makes all subsequent transi-
tions among states D, E, F, and G. State D is visited when the last two inputs are
00. States E, F, and G are visited when the last two inputs are 01, 10, or 11,

A

B
0/0

1/0

C

D

E

F

G

0/0

1/0

0/0

1/0

0/0

1/0

1/0

1/1

0/01/1

0/0

0/1

Input: 0 1 1 0 1 1 1 0 0

Output: 0 0 1 1 1 1 0 1 0

Time: 0 1 2 3 4 5 6 7 8

Figure B-29    State transition diagram for sequence detector.
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respectively.

The next step is to create a state table and reduce the number of states. The state
table shown in Figure B-30 is taken directly from the state transition diagram.

We then apply the state reduction technique by hypothesizing that all states are
equivalent, and then refining our hypothesis. The process is shown below:

P0 = (ABCDEFG)

P1 = (ABCD) (EF) (G)

P2 = (A) (BD) (C) (E) (F) (G)

P3 = (A) (BD) (C) (E) (F) (G) √

States B and D along the 0,0,0 path in the state transition diagram are equiva-
lent. We create a reduced table, using primed letters to denote the new states as
shown in Figure B-31.

Next, we make an arbitrary state assignment as shown in Figure B-32. We then
use the state assignment to create K-maps for the next state and output functions
as shown in Figure B-33. Notice that there are four don’t care conditions that
arise because the 110 and 111 state assignments are unused. Finally, we create the
gate-level circuit, which is shown in Figure B-34. ■

X
0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0

Figure B-30    State table for sequence detector.
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B.3.2 EXCITATION TABLES

In addition to the S-R and D flip-flops, the J-K and T flip-flops (see Appendix
A) are commonly used. The J-K flip-flop behaves similarly to an S-R flip-flop,
except that it flips its state when both inputs are set to 1. The T flip-flop (for
“toggle”) alternates states, as when the inputs to a J-K flip-flop are set to 1. Logic
diagrams and symbols for the J-K and T flip-flops are shown in Figure B-35 and

Figure B-36, respectively.

X
0 1

B'/0 C'/0

Present state

Input

B'/0 D'/0
E'/0 F'/0
E'/0 F'/1
B'/0 D'/1
E'/1 F'/0

A: A'
BD: B'

C: C'
E: D'
F: E'
G: F'

Figure B-31    Reduced state table for sequence detector.
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B':  001
C':  010
D':  011
E':  100

001/0 011/0
100/0 101/0
100/0 101/1
001/0 011/1

F':  101 100/1 101/0

S2S1S0 S2S1S0Z S2S1S0Z

Figure B-32    State assignment for sequence detector.
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Figure B-35    Logic diagram and symbol for a J-K flip-flop.
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All of the flip-flops discussed up to this point as well as several variations are
available as separate components, and in the past designers would choose one
form or the other depending on characteristics such as cost, performance, avail-
ability, etc. These days, with the development of VLSI technology, the D flip-flop
is typically used throughout a circuit. High speed circuits making use of low den-
sity logic, however, such as gallium arsenide (GaAs), may still find an application
for the various forms. For situations such as this, we consider the problem of
choosing a flip-flop that minimizes the total number of components in a circuit,
in which a flip-flop is considered to be a single component.
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Figure B-33    K-map reduction of next state and output functions for sequence detector.
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The four flip-flops discussed up to this point can be described by excitation
tables, as shown in Figure B-37. Each table shows the settings that must be
applied at the inputs at time t in order to change the output at time t+1.

As an example of how excitation tables are used in the design of a finite state
machine, consider using a J-K flip-flop in the design of a serial adder. We start
with the serial adder shown in Figure B-38. State A represents the case in which
there is no carry from the previous time step, and state B represents the case in
which there is a carry from the previous time step.

We then create a truth table for the appropriate flip-flop. Figure B-39 shows a
truth table that specifies functions for D, S-R, T, and J-K flip-flops as well as the
output Z. We will only make use of the functions for the J-K flip-flop and the Z
output here.

The way we construct the truth table is by first observing what the current state
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Figure B-34    Gate-level implementation of sequence detector.
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St is, and then comparing it to what we want the next state to be. We then use
the excitation tables to set the flip-flop inputs accordingly. For example, in the
first line of the truth table shown in Figure B-39, when X=Y=0 and the current
state is 0, then the next state must be 0 as read from the state table of Figure
B-38. In order to achieve this for a J-K flip-flop, the J and K inputs must be 0
and d, respectively, as read from the J-K excitation table in Figure B-39. Con-
tinuing in this manner, the truth table is completed and the reduced Boolean
equations are obtained as shown below:

The corresponding circuit is shown in Figure B-40. Notice that the design has a
small gate input count (20), as compared with a gate input count of 25 for the
logically equivalent circuit shown in Figure B-41 which uses a D flip-flop.
Flip-flops are not included in the gate input count, although they do contribute
to circuit complexity.

EXCITATION TABLE EXAMPLE: A MAJORITY 
CHECKER

For this example, we would like to design a circuit using T flip-flops and 8-to-1
MUXes that computes the majority function (see Figure A-15) for three inputs
that are presented to an FSM in serial fashion. The circuit outputs a 0 until the
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Figure B-40    Logic design for a serial adder using a J-K flip-flop.
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third input is seen, at which point a 0 or a 1 is produced at the output according
to whether there are more 0’s or 1’s at the input, respectively. For example, an
input of 011100101 produces an output of 001000001.

We start by creating a state transition diagram that enumerates all possible states
of the FSM. In Figure B-42, a state transition diagram is shown in which the
states are organized according to the number of inputs that have been seen. State
A is the initial state in which no inputs have yet been seen. The three inputs are
symbolized with the notation: _ _ _. After the first input is seen, the FSM makes
a transition to state B or state C for an input of 0 or 1, respectively. The input
history is symbolized with the notation: 0_ _ and 1_ _ for states B and C, respec-
tively. States D, E, F, and G enumerate all possible histories for two inputs, as
symbolized by the notation: 00_, 01_, 10_, and 11_, respectively.

The FSM outputs a 0 when making transitions to states B through G. On the
third input, the FSM returns to state A and outputs a 0 or a 1 according to the
majority function. A total of eight states are used in the FSM of Figure B-42,

which are summarized in the state table shown in Figure B-43a.

The eight state FSM can be reduced to a seven state FSM. The reduction process
is shown in Figure B-43b. States E and F can be combined, as shown in the
reduced table of Figure B-43c. We use the reduced state table in creating a state
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Figure B-42    State transition diagram for a majority FSM.
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assignment, which is shown in Figure B-44a for D flip-flops. We want to use T
flip-flops, and keeping the same state assignment, obtain the state table shown in
Figure B-44b. The T flip-flop version is obtained by comparing the current state

with the next state, and following the excitation mapping for a T flip-flop shown
in Figure B-37. The T flip-flop version has a 0 for the next state when the current
and next states are the same in the D flip-flop version, and has a 1 if the current
and next states differ in the D flip-flop version. There are three bits used for the
binary coding of each state, and so there are three next state functions (s0, s1, and
s2) and an output function Z. The corresponding circuit using T flip-flops is
shown in Figure B-45. Zeros are used for don’t care states 110 and 111. ■

■ SUMMARY

Circuits that are generated from unreduced expressions may become very large,
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Figure B-43    (a) State table for majority FSM; (b) partitioning; (c) reduced state table.
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and so the expressions are reduced when possible into logically equivalent smaller
expressions. One method of reducing expressions is to perform algebraic manipula-
tion using the properties of Boolean algebra. This approach is powerful but
involves trial and error, and is tedious to carry out by hand. A simpler method is
to apply K-map minimization. This is a more visual technique, but becomes diffi-
cult to carry out for more than about six variables. The tabular method lends itself
to automation, and allows terms to be shared among functions.

An FSM can be in only one of a finite number of states at any time, but there are
infinitely many FSMs that have the same external behavior. The number of
flip-flops that are needed for an FSM may be reduced through the process of state
reduction, and the complexity of the combinational logic in the FSM may be
reduced by choosing an appropriate state assignment. The choice of flip-flop types
also influences the complexity of the resulting circuit. The D flip-flop is commonly
used for FSMs, but other flip-flops can be used such as the S-R, J-K, and T
flip-flops.

■ FURTHER READING
(Booth, 1984) gives a good explanation of the Quine-McCluskey reduction pro-
cess. (Kohavi, 1978) provides a thorough treatment of combinational logic
reduction and state reduction. (Agrawal and Cheng, 1990) cover design for test-
ability based on state assignments.

Agrawal, V.D. and K. T. Cheng, “Finite State Machine Synthesis with Embedded
Test Function,” Journal of Electronic Testing: Theory and Applications, vol. 1, pp.
221–228, (1990).

Booth, T. L., Introduction to Computer Engineering: Hardware and Software
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Figure B-45    Logic circuit for majority FSM.
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Design, 3/e, John Wiley & Sons, New York, (1984).

Kohavi, Z., Switching and Finite Automata Theory, 2/e, McGraw-Hill, New York,
(1978).

■ PROBLEMS
B.1 Given the following functions, construct K-maps and find minimal

sum-of-products expressions for f and g.

f(A,B,C,D) = 1 when two or more inputs are 1, otherwise f(A,B,C,D) = 0.

g(A,B,C,D) = 1 when the number of inputs that are 1 is even (including the
case when no inputs are 1), otherwise  g(A,B,C,D) = . 

B.2 Use K-maps to simplify function f and its don’t care condition below. Per-
form the reduction for (a) the sum-of-products form and (b) the prod-
uct-of-sums form.

B.3 Given a logic circuit, is it possible to generate a truth table that contains
don’t cares? Explain your answer.

B.4 The following K-map is formed incorrectly. Show the reduced equation
that is produced by the incorrect map, and then form the K-map correctly and
derive the reduced equation from the correct map. Note that both K-maps
will produce functionally correct equations, but only the properly formed
K-map will produce a minimized two-level equation.

B.5 A 4-to-1 multiplexer can be represented by the truth table shown below.

f A B C D, , ,( )

f A B C D, , ,( ) 2 8 10 11, , ,( )∑  ∑ d 0 9,( )+=
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000
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Use map-entered variables to produce a reduced SOP Boolean equation.

B.6 Use the tabular method to reduce the function:

B.7 Use the tabular method to reduce the following multiple output truth
table:

B.8 Reduce the equation for F shown below to its minimal two-level form,
and implement the function using a three-input, one-output PLA.

B.9 Use function decomposition to implement function f below with two
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4-to-1 MUXes. Parenthesize the equation so that C and D are in the inner-
most level as in Equation B.22. Make sure that every input to each MUX is
assigned to a value (0 or 1), to a variable, or to a function.

B.10  Reduce the following state table:

B.11 Reduce the following state table:

B.12 The following ternary state table may or may not reduce. Show the reduc-

f A B C D, , ,( ) ABCD ABCD ABCD AB+ + +=
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tion process (the partitions) and the reduced state table.

B.13 The following circuit has three master-slave J-K flip-flops. There is a single
input CLK and three outputs Q2, Q1, and Q0 that initially have the value 0.
Complete the timing diagram by showing the values for Q2, Q1, and Q0.
Assume that there are no delays through the flip-flops.

B.14 Use a T flip-flop to design a serial adder, using the approach described in
Section B.3.2.

B.15 In the following reduced state table, the state assignments have already
been made. Design the machine using D flip-flops, AND and OR  gates. Use
K-maps to reduce the expressions for the next state and output functions. Be
careful to construct the K-maps correctly, since there are only three rows in
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the state table.

B.16 Draw a logic diagram that shows a J-K flip-flop can be created using a D
flip-flop.
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