

CHAPTER 9 MODERN ARCHITECTURES

363

9.1 The Emergence of RISC Architectures

The 1960’s saw a rapid growth in the complexity of computers. New, sophisti-
cated instructions were made available at the assembly language level, and pro-
grammers were writing ever more complex programs. Although assembly
language instructions increased in complexity, the instructions were generally
more primitive than the high level constructs that programmers used. This

semantic gap

 as it is known, fueled an explosion of architectural complexity.

Unfortunately, as computer architects attempted to close the semantic gap, they
sometimes made it worse. The IBM 360 architecture has the

MVC

 (move charac-
ter) instruction that copies a string of up to 256 bytes between two arbitrary
locations. If the source and destination strings overlap, then the overlapped por-
tion is copied one byte at a time. The runtime analysis that determines the degree
of overlap adds a significant overhead to the execution time of the

MVC

 instruc-
tion. Measurements show that overlaps occur only a few percent of the time, and
that the average string size is only eight bytes. In general, faster execution results
when the

MVC

 instruction is entirely ignored. Although a greater number of
instructions may be executed without the

MVC

 instruction, on average, fewer
cycles are needed to implement the copy operation without using

MVC

 than by
using it.

Architectures with complex instruction sets that have highly specialized com-
mands (like

MVC

), are known as

complex instruction set computers

 (CISCs).
Despite the

MVC

 case and others like it, CISCs are not bad. In the 1960’s, the
speed of a computer’s memory was much slower than the speed of the CPU, and
the size of the memory was very small. It thus made sense to send a few very
powerful instructions from the memory to the CPU, rather than to send a great
number of simpler instructions.

MODERN
ARCHITECTURES

 9

364

CHAPTER 9 MODERN ARCHITECTURES

As technology advanced, the speed and density of memory improved at a faster
rate than the speed and complexity of the CPU. With this shift in performance,
it became more economical to increase the speed of the CPU by making it sim-
pler, at the expense of using more instructions to compensate for the reduced
complexity of the CPU. This style of architecture is known as a reduced instruc-
tion set computer (RISC).

RISC architectures have three primary characteristics that distinguish them from
CISC architectures:

(1) A small instruction set that consists of simple, fixed length, fixed format
instructions that execute in a single machine cycle;

(2)

Pipelined

 access to memory (see Section 9.4), and a large number of regis-
ters for arithmetic operations;

(3) Use of an optimizing compiler, in which execution speed is greatly influ-
enced by the ability of the compiler to manage resources, such as maintaining
a filled pipeline during branches.

In the next few sections, we will explore the motivation for RISC architectures,
and special characteristics that make RISC architectures effective.

9.2 Quantitative Analyses of Program Execution

During the 1970’s, when CISC architectures enjoyed high visibility, attention
turned to what computers actually spent their time doing. Up to that time, com-
puter designers added more instructions to their machines because it was a good
selling strategy to have more functionality than a competing processor. In many
CISC machines (such as the IBM 360 and the Motorola 68000), the instructions
are implemented in microcode (see Chapter 9 for a discussion on microcode). As
a result of implementing a large instruction set in microcode, instruction decod-
ing takes a long time and the microstore is large. Although a large, slow micros-
tore may seem like a bad idea, it could be a good idea if overall execution time is
reduced. As we will see, in general, adding complexity to the instructions

does not

improve execution time with present day technology.

Figure 9-1 summarizes the frequency of occurrence of instructions in a mix of
programs written in a variety of languages. Nearly half of all instructions are
assignment statements. Nearly a quarter of all instructions are

if

 conditionals.

CHAPTER 9 MODERN ARCHITECTURES

365

Interestingly, arithmetic and other “more powerful” operations account for only
7% of all instructions. Thus, if we want to improve the performance of a com-
puter, our efforts would be better spent optimizing instructions that account for
the greatest percentage of execution time rather than focusing on instructions
that are inherently complex but rarely occur.

Related metrics are shown in Figure 9-2. From the table, the number of terms in

an assignment statement is normally just a few. The most frequent case (80%),
has just a single term on the right side of the assignment operator, as in

X

←

Y

.
There are only a few local variables in each procedure, and only a few arguments
are normally passed to a procedure.

What we can conclude from these measurements is that the bulk of computer
programs are very simple at the instruction level, even though more complex

Statement Average Percent of Time

Assignment

If

Call

Loop

Goto

Other

47

23

15

6

3

7

Figure 9-1 Frequency of occurrence of instruction types for a variety of languages. The percentages

do not sum to 100 due to roundoff. (Adapted from [Tanenbaum, 1990].)

Percentage of
Number of Terms

in Assignments

0

1

2

3

4

≥ 5

–

80

15

3

2

0

Percentage of
Number of Locals

in Procedures

22

17

20

14

8

20

Percentage of Number
of Parameters in
Procedure Calls

41

19

15

9

7

8

Figure 9-2 Percentages showing complexity of assignments and procedure calls. (Adapted from

[Tanenbaum, 1990].)

366

CHAPTER 9 MODERN ARCHITECTURES

programs could potentially be created. This means that there may be little or no
payoff in increasing the complexity of the instructions.

A basic tenet of current computer architecture is to make the frequent case fast,
and this often means making it simple. Since the assignment statement happens
so frequently, we should concentrate on making it fast (and simple, as a conse-
quence). One way to simplify assignments is to force all communication with
memory into just two commands: LOAD and STORE. The LOAD/STORE
model is typical of RISC architectures. We saw the LOAD/STORE concept in
Chapter 4 with the

ld

 and

st

 instructions for the ARC.

By restricting memory accesses to LOAD/STORE instructions only, other
instructions can only access data that is stored in registers. There are two conse-
quences of this, both good and bad: (1) accesses to memory can be easily over-
lapped, since there are no side effects that would occur if different instruction
types could access memory (this is good); and (2) there is a need for a large num-
ber of registers (this seems bad, but read on).

A simpler instruction set results in a simpler and typically smaller CPU, which
frees up space on a circuit board (or a processor chip) to be used for something
else, like registers. Thus, the need for more registers is balanced to a degree by the
newly vacant circuit area, or

real estate

 as it is sometimes called. A key problem
lies in how to manage these registers, which is described in the next section.

9.3 Overlapping Register Windows

Procedure calls may be deeply nested in an ordinary program, but for a given
window of time, the nesting depth fluctuates within a narrow band. Figure 9-3
illustrates this behavior. For a nesting depth window size of five, the window
moves only 18 times for 100 procedure calls. Results produced by a group at UC
Berkeley (Tamir and Sequin, 1983) show that a window size of eight will shift on
less than 1% of the calls or returns.

The small window size for nested calls is important for improving performance.
For each procedure call, a stack frame is normally constructed in which parame-
ters, a return address, and local variables are placed. There is thus a great deal of
stack manipulation that takes place for procedure calls, but the complexity of the
manipulation is not all that great. That is, stack references are highly localized
within a small area.

CHAPTER 9 MODERN ARCHITECTURES

367

The RISC I architecture exploits this locality by keeping the active portion of the
stack in registers. Figure 9-4 shows the user’s view of register usage for the RISC

I. The user sees 32 registers in which each register is 32 bits wide. Registers
R0-R7 are used for global variables. Registers R8-R15 are used for incoming
parameters. Registers R16-R23 are used for local variables, and registers
R24-R31 are used for outgoing parameters. The eight registers within each group
are enough to satisfy the bulk of call/return activity, as evidenced by the fre-
quency counts in Figure 9-3.

Although the user sees 32 registers, there may be several hundred registers that
overlap. Figure 9-5 shows a model known as

overlapping register windows

. The
global registers are detached from the others, and are continuously available as

Nesting
Depth

Time in Units of Calls/Returns

Window
depth = 5

Figure 9-3 Call-return behavior as a function of nesting depth and time (Adapted from [Stallings,

19?? (2nd ed.)]).

Global Variables

Incoming Parameters

Local Variables

Outcoming Parameters

32 bits

R0

R7
R8

R15
R16

R23
R24

R31

...

...

...

...

%g
0
%g
7%i
0
%i
7%l
0
%l
7%o
0
%o

...

...

...

...

Figure 9-4 User’s view of RISC I registers.

368

CHAPTER 9 MODERN ARCHITECTURES

R0-R7. Registers R8-R31 make up the remaining 24 registers that the user sees,
but this group of registers slides deeper into the

register file

 (the entire set of reg-
isters) on each procedure call. Since the outgoing parameters for one procedure
are the incoming parameters to another, these sets of registers can overlap. Regis-
ters R8-R31 are referred to as a

window

. A

current window pointer

 (CWP)
points to the current window, and increases or decreases for calls and returns,
respectively.

In the statistically rare event when there are not enough registers for the level of
nesting, then main memory is used. However, main memory is used for the

low-
est

 numbered window, so that the new current window still uses registers. The
highest register location then wraps around to the lowest, forming a

circular
buffer

. As returns are made, registers that were written to memory are restored to
the register file. Thus, execution always takes place with registers and never
directly with main memory.

9.4 Pipelining the Datapath

There are four phases of operation in the fetch-execute cycle: instruction fetch,
decode, operand fetch, and execute. Each ARC instruction in our model there-
fore requires approximately four machine cycles to complete execution (this is
not true for most commercial SPARC implementations, which have fewer
phases.) We can view these four phases as taking place sequentially, as illustrated
in Figure 9-6.

Globals
R0

R7

R8

R15
R16

R23
R24

R31

...

...

...

...

Ins

Locals

Outs

Procedure
A

Globals
R0

R7

...

R8

R15
R16

R23
R24

R31

...

...

...

Ins

Locals

Outs

Procedure
B

CWP = 8

Overlap

CWP = 24

Figure 9-5 Overlapping register windows.

CHAPTER 9 MODERN ARCHITECTURES

369

Each of the four units performs a different operation in the fetch-execute cycle.
After the Instruction Fetch unit finishes its task, control is handed off to the
Decode unit. At this point, the Instruction Fetch unit can begin fetching the

next

instruction, which overlaps with the decoding of the previous instruction. When
the Instruction Fetch and Decode units complete their tasks, they hand off the
remaining tasks to the next units (Operand Fetch is the next unit for Decode).
The flow of control continues until all units are filled. This model of overlapped
operation is referred to as

pipelining

.

Although it takes four steps to execute an instruction in our ARC model, on
average, one instruction can be executed per cycle as long as the pipeline stays
filled. The pipeline does not stay filled, however, unless we are careful as to how
instructions are ordered. We know from Figure 9-1 that approximately one in
every four instructions is a branch. We cannot fetch the instruction that follows a
branch until the branch completes execution. Thus, as soon as the pipeline fills, a
branch is encountered, and then the pipeline has to be

flushed

 by filling it with
no-operations (NOPs). A similar situation arises with a Load or a Store instruc-
tion, which requires more than one cycle. The “wait” cycles are filled with NOPs.

Figure 9-7 illustrates the pipeline behavior during a memory reference and a
branch for the ARC instruction set. The

addcc

 instruction enters the pipeline
on time step (cycle) 1. On cycle 2, the

ld

 instruction enters the pipeline and

addcc

 moves to the Decode stage. The pipeline continues filling with the

srl

and

subcc

 instructions on cycles 3 and 4, respectively. On cycle 4, the

addcc

instruction is executed and leaves the pipeline. On cycle 5, the

ld

 instruction
reaches the Execute level, but does not finish execution because an additional
cycle is needed for the memory reference. The

ld

 instruction finishes execution
during cycle 6.

The

ld

 and

st

 instructions both require five cycles, but the remaining instruc-
tions require only four. Thus, an instruction that follows an

ld

 or

st

 should not
use the register that is being loaded or stored. A safe approach is to insert a NOP
after an

ld

 or an

st

 as shown in Figure 9-8a. The extra cycle (or cycles, depend-

Instruction
Fetch Decode Operand

Fetch Execute

Figure 9-6 Four-stage instruction pipeline.

370

CHAPTER 9 MODERN ARCHITECTURES

ing on the architecture) for a load is known as a

delayed load

, since the data
from the load is not immediately available on the next cycle. A

delayed branch

 is
similar, as shown for the

be

 instruction in cycles 5 through 8 of Figure 9-7.

The

nop

 instruction wastes a cycle as the processor waits for a Load or a Store to
complete, or as the processor waits for the pipeline to be flushed. If we look at
the code that surrounds a Load, Store, or Branch instruction, there is usually an
instruction nearby that can replace the

nop

. In Figure 9-8a, the

srl

 instruction
can be moved to the position of the

nop

 since its register usage does not conflict
with the surrounding code. After replacing the

nop

 line with the

srl

 line, the
code shown in Figure 9-8b is obtained. This is the code that is traced through the
pipeline in Figure 9-7.

An alternative approach is to simply guess which way the branch will go, and
then undo any damage if the wrong path is taken. Statistically, loops are executed
more often than not, and so it is usually a good guess to assume that a branch out

Instruction
Fetch

Decode

Operand
Fetch

Execute

1 2 3 4 5 6 7 8

addcc ld srl subcc be nop nop nop

addcc ld srl subcc be nop nop

addcc ld srl subcc be nop

addcc ld srl subcc be

ld
Memory

Reference

Time

Figure 9-7 Pipeline behavior during a memory reference and a branch.

(a)

addcc %r1, 10, %r1

ld %r1, %r2

nop

subcc %r2, %r4, %r4

be label

srl %r3, %r5

(b)

addcc %r1, 10, %r1

ld %r1, %r2

srl %r3, %r5

subcc %r2, %r4, %r4

be label

Figure 9-8 SPARC code, (a) with a nop inserted, and (b) with srl migrated to nop position.

CHAPTER 9 MODERN ARCHITECTURES

371

of a loop will not be taken. Thus, a processor can start processing the next
instruction in anticipation of the direction of the branch. If the branch goes the
wrong way, then the execution phase for the next instruction, and any subse-
quent instructions that enter the pipeline, can be stopped so that the pipeline can
be flushed. This approach works well for a number of architectures, particularly
those with slow cycle speeds or deep pipelines. For RISCs, however, the overhead
of determining when a branch goes the wrong way and then cleaning up any side
effects caused by wrong instructions entering the pipeline is generally too great.
The

nop

 instruction is normally used in RISC pipelines when something useful
cannot be used to replace it.

9.5 Multiple Instruction Issue Machines

[Placeholder for future section.]

9.6 VLIW Machines

[Placeholder for future section. Discussion of the Intel Merced architecture.]

EXAMPLE: PLACEHOLDER

[Placeholder for future section.]

9.7 Case Study: Inspecting Compiled Code
[Note from authors: This section is not finished.]

In this section, we analyze a C compiler produced SPARC assembly program. We
start with the C program shown in Figure 9-9 , in which the main routine passes
two integers to a subroutine, which returns the sum of the integers to the main
routine. The code produced by a Solaris Unix C compiler using the command
line:

gcc -S file.c

is shown in Figure 9-10.

A line by line explanation of the assembled code is given in Figure 9-10. There
are a number of new instructions and pseudo-ops introduced in this code:

372 CHAPTER 9 MODERN ARCHITECTURES

.seg/.section Unix executable programs have three segments for data, text
(the instructions), and the stack. The .seg pseudo-op instructs the assembler to
place the code that follows into one of these three segments. Some of the seg-
ments have different protections, which is why there is a data segment and also
a data1 segment. The data1 segment contains constants, and should be pro-
tected from writing. The data segment is both readable and writable and is
therefore not protected against reading or writing (but it is protected from being
executed, as is data). Newer versions of Unix allow more text and data areas to
be used for different read, write, and execute protections.

.proc [Placeholder for unwritten text. – Au]

%hi Same as .high22.

%lo Same as .low10.

add Same as addcc except that the condition codes are unaffected.

/* Example C program to be compiled with gcc
*/

main ()

{

 int a, b, c;

 a =
10;

}

int
add_two(a,b)int a,
b;{

 int
result;

 result = a +
b; return(result);

}

#include
<stdio.h>

 b =
4; c = add_two(a,
b);

 printf("c = %d\n",
c);

Figure 9-9 Source code for C program to be compiled with gcc.

CHAPTER 9 MODERN ARCHITECTURES 373

save Advances current window pointer and increments stack pointer to create
space for local variables.

mov Same as:
or %g0,register_or_immediate,destination_register. This dif-
fers from st because the destination is a register.

nop No-operation (the processor waits for one instruction cycle, while the
branch finishes).

.ascii/.asciz Reserves space for an ASCII string.

! Output produced by gcc compiler on Solaris (Sun UNIX)

.section ".rodata" ! Read-only data for routine main

 .align 8 ! Align read-only data for routine main on an

 ! 8-byte boundary

 .asciz "c = %d\n" ! This is the read-only data

 .proc 04

 !#PROLOGUE# 0

 save %sp, -128, %sp ! Create 128 byte stack frame. Advance

 ! CWP (Current Window Pointer)

 !#PROLOGUE# 1

 ! This is local variable a in main routine of C source program.

 st %o0, [%fp-20] ! Store %o0 five words into stack frame.

 mov 4, %o0 ! %o0 <- 4. This is local variable b in main.

.file add.c ! Identifies the source program

.section "text" ! Executable code starts here

 .align 4 ! Align executable code on a 4-byte (word) boundary

 .type main,#function

! Annotations added by author

.LLC0

 .global main

main: ! Beginning of executable code for routine main

 mov 10, %o0 ! %o0 <- 10. Note that %o0 is the same as %r24.

 st %o0, [%fp-24] ! Store %o0 six words into stack frame.

 ld [%fp-20], %o0 ! Load %o0 and %o1 with parameters to

 ld [%fp-24], %o1 ! be passed to routine add_two.

 call add_two, 0 ! Call routine add_two

 nop ! Pipeline flush needed after a transfer of control

 st %o0, [%fp-28] ! Store result 67 words into stack frame.

 ! This is local variable c in main.

 sethi %hi(.LLC0), %o1 ! This instruction and the next load

 or %o1, %lo(.LLC0), %o0 ! the 32-bit address .LLC0 into %o0

 ld [%fp-28], %o1 ! Load %o1 with parameter to pass to printf

Figure 9-10 gcc generated SPARC code (continued on next page).

374 CHAPTER 9 MODERN ARCHITECTURES

set Sets a register to a value. This is a macro that expands to the sethi, %hi,
and %lo constructs shown in #PROLOGUE# 1.

ret Return. Same as: jmpl %i7+8, %g0.

restore Decrements current window pointer.

b Same as ba.

.file Identifies the source file.

.align Forces the code that follows onto a boundary evenly divisible by its

 call printf, 0

 nop ! A nop is needed here because of the pipeline flush

 ! that follows a transfer of control.

.LL1

 ret ! Return to calling routine (Solaris for this case)

 restore ! The complement to save. Although it follows the

 ! return, it is still in the pipeline and gets executed.

.LLfe1

 .size main, .LLfe1-main ! Size of

 .align 4

 .global add_two

 .type add_two, #function

 .proc 04

add_two:

 !#PROLOGUE# 0

 save %sp, -120, %sp

 !#PROLOGUE# 1

 st %i0, [%fp+68] !Same as %o0 in calling routine (variable a)

 st %i1, [%fp+72] !Same as %o1 in calling routine (variable b)

 ld [%fp+68], %o0

 ld [%fp+72], %o1

 add %o0, %o1, %o0 ! Perform the addition

 st %o0, [%fp-20] ! Store result in stack frame

 ld [%fp-20], %i0 ! %i0 (result) is %o0 in called routine

 b .LL2

 nop

.LL2:

 ret

 restore

.LLfe2:

 .size add_two, .LLfe2-add_two

 .ident "GCC: (GNU) 2.5.8"

Figure 9-10 (cont’)

CHAPTER 9 MODERN ARCHITECTURES 375

argument.

.type Associates a label with its type.

.size Computes the size of a segment.

.ident Identifies the compiler version.

Notice that the compiler does not seem to be consistent with its choice of regis-
ters for parameter passing. Prior to the call to add_two, the compiler uses %o0
and %o1 (%r24 and %r25) for parameters passed to add_two. Then, %r25 is
used for the parameters passed to printf. Why did the compiler not start with
%r24 again, or choose the next available register (%o2)? This is the register
assignment problem, which has been the object of a great deal of study. We will
not go into details here1, as this is more appropriate for a course in compiler
design, but suffice it to say that any logically correct assignment of variables to
registers will work, but that some assignments are better than others in terms of
the number of registers used and the overall program execution time.

Why are the stack frames so large? We only need three words on the stack frame
for local variables a, b, and c in main. We might also need a word to store the
return address, although the compiler does not seem to generate code for that.
There are no parameters passed to main by the operating system, and so the
stack frame that main sees should only be four words (16 bytes) in size. Thus,
the line at the beginning of routine main:

save %sp, -128, %sp

should only be:

save %sp, -16, %sp.

What is all of the extra space for? There are a number of runtime situations that
may need stack space. For instance, if the nesting depth is greater than the num-

1. Here are a few details, for the curious: %r0 (%o0) is still in use (add_two is expecting
the address of LLC0 to show up in %r0), and %r1 is no longer needed at this point, so it can be
reassigned. But then, why is %r1 used in the sethi line? Would it have made sense to use %r0
instead of introducing another register into the computation? See problem 9.2 at the end of the
chapter for more on this topic.

376 CHAPTER 9 MODERN ARCHITECTURES

ber of windows, then the stack must be used for overflow. (See Figure D-2 in
[SPARC, 1992])

If a scalar is passed from one routine to another, then everything is fine. But if a
callee refers to the address of a passed scalar (or aggregate), then the scalar (or
aggregate) must be copied to the stack and be referenced from there for the life-
time of the pointer (or for the lifetime of the procedure, if the pointer lifetime is
not known).

Why does the return statement ret cause a return to the code that is 8 bytes past
the call, instead of 4 as we have been doing it? This is because there is a nop
that follows call (the so-called “delay-slot instruction”).

Notice that routine labels that appear in the source code are prepended with an
underscore in the assembly code, so that main, add_two, and printf in C
become _main, _add_two, and _printf in gcc generated SPARC code. This
means that if we want to write a C program that is linked to a gcc generated
SPARC program, that the C calls should be made to routines that begin with
underscores. For example, if add_two is compiled into SPARC code, and we
invoke it from a C main program in another file, then the C program should
make a call to _add_two, and not add_two, even though the routine started
out as add_two. Further, the C program needs to declare _add_two as exter-
nal.

If the compilation for add_two is continued down to an executable file, then
there is no need to treat the labels differently. The add_two routine will still be
labeled _add_two, but routine main will be compiled into code that expects to
see _add_two and so everything will work OK. This is not the case, however, if
a gcc program makes calls to a Fortran library.

Fortran is a commonly used language in the scientific community, and there are a
number of significant Fortran libraries that are used for linear algebra (LIN-
PACK), modeling and simulation (__), and parallel scientific applications (__).
As C programmers, we sometimes find ourselves wanting to write C programs
that make calls to Fortran routines. This is easy to do once we understand what is
happening.

There are two significant differences that need to be addressed:

(1) differences in routine labels;

CHAPTER 9 MODERN ARCHITECTURES 377

(2) differences in subroutine linkage.

In Fortran, the source code labels are prepended with two underscores in the
assembly code. A C program that makes a call to Fortran routine add_two
would then make a call to _ _add_two, which also must be declared as external
in the C source code (and declared as global in the Fortran program).

If all of the parameters that are passed to the Fortran routines are pointers, then
everything will work OK. If there are any scalars passed, then there will be trou-
ble because C uses call-by-value for scalars whereas Fortran uses call-by-reference.
We need to “trick” the C compiler into using call-by-reference by making it
explicit. Wherever a Fortran routine expects a scalar in its argument list, we use a
pointer to the scalar in the C code. As an example, a C/Fortran version of the
add_two code is shown below:

[Placeholder for unwritten C/Fortran figure.]

As a practical consideration, the gcc compiler will compile Fortran programs. It
knows what to do by observing the extension of the source file, which should be
.f for Fortran. [The rest of this section is unfinished. – Au(s)]

[Note to Au: Manipulation of %sp needs to be atomic. See page 191 of SPARC
Architecture manual, under first bullet.]

9.8 Case Study: Superscalar Assembly Language Programming on the
Intel Pentium II with MMX Technology
Discussion of the Intel Merced architecture.

EXAMPLE

A processor has a five stage pipeline. If a branch is taken, then four cycles are
needed to flush the pipeline. The branch penalty b is thus 4. The probability Pb
that a particular instruction is a branch is .25. The probability Pt that the branch
is taken is .5. We would like to compute the average number of cycles needed to
execute an instruction, and the execution efficiency.

378 CHAPTER 9 MODERN ARCHITECTURES

When the pipeline is filled and there are no branches, then the average number
of cycles per instruction (CPINo_Branch) is 1. The average number of cycles per
instruction when there are branches is then:

CPIAvg = (1 - Pb)(CPINo_Branch) + Pb[Pt(1 + b) + (1 - Pt)(CPINo_Branch)]

= 1 + bPbPt.

After making substitutions, we have:

CPIAvg = (1 - .25)(1) + .25[.5(1 + 4) + (1 - .5)(1)]

= 1.5 cycles.

The execution efficiency is the ratio of the cycles per instruction when there are
no branches to the cycles per instruction when there are branches. Thus we have:

Execution efficiency = (CPINo_Branch)/(CPIAvg) = 1/1.5 = 67%.

The processor runs at 67% of its potential speed as a result of branches, but this
is still much better than the five cycles per instruction that might be needed
without pipelining.

There are techniques for improving the efficiency. We know that loops are usu-
ally executed more than once, so we can guess that a branch out of the loop will
not be taken and be right most of the time. We can also run simulations on the
non-loop branches, and get a statistical sampling of which branches are likely to
be taken, and then guess the branches accordingly. As explained earlier, this
approach works best when the pipeline is deep or the clock rate is slow. ■

■ SUMMARY

In the RISC approach, the most frequently occuring instructions are optimized by
eliminating or reducing the complexity of other instructions and addressing modes
commonly found in CISC architectures. The performance of RISC architectures is
further enhanced by pipelining and increasing the number of registers available to
the CPU.

CHAPTER 9 MODERN ARCHITECTURES 379

■ FURTHER READING
The three characteristics of RISC architectures originated at IBM’s T. J. Watson
Research Center, as summarized in (Ralston and Reilly, 1993, pp. 1165 - 1167).
(Hennessy and Patterson, 1990) is the seminal reference on much of the work
that led to the RISC concept, although the word “RISC” does not appear in the
title of their textbook. (Stallings, 1990) is a thorough reference on RISCs. (Tamir
and Sequin, 1983) show that a window size of eight will shift on less than 1% of
the calls or returns. (Tanenbaum, 1990) provides a readable introduction to the
RISC concept.

Hennessy, J. L. and D. A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, San Mateo, California, (1990).

Ralston, A. and E. D. Reilly, eds., Encyclopedia of Computer Science, 3/e, van
Nostrand Reinhold, (1993).

Stallings, W., Reduced Instruction Set Computers, 3/e, IEEE Computer Society
Press, Washington, D.C., (1991).

Tamir, Y., and C. Sequin, “Strategies for Managing the Register File in RISC,”
IEEE Trans. Comp., (Nov. 1983).

Tanenbaum, A., Structured Computer Organization, 3/e, Prentice Hall, Engle-
wood Cliffs, New Jersey, (1990).

■ PROBLEMS
9.1 Increasing the number of cycles per instruction can sometimes improve

the execution efficiency of a pipeline. If the time per cycle for the pipeline
described in Section 5.6.3 is 20 ns, then CPIAvg is 1.5 × 20 ns = 30 ns. Com-
pute the execution efficiency for the same pipeline in which the pipeline depth
increases from 5 to 6 and the cycle time decreases from 20 ns to 10 ns.

9.2 The SPARC code below is taken from the gcc generated code in Figure
9-10. Can %r0 be used in all three lines, instead of “wasting” %r1 in the sec-
ond line?

...
st %o0, [%fp-28]

380 CHAPTER 9 MODERN ARCHITECTURES

sethi %hi(.LLC0), %o1
or %o1, %lo(.LLC0), %o1

...

