

CHAPTER 6 THE CONTROL UNIT

185

In the earlier chapters, we examined the computer at the Application Level, the
High Level Language level, and the Assembly Language level (as shown in Figure
1-4.) In Chapter 4 we introduced the concept of an ISA: an instruction set that
effects operations on registers and memory. In this chapter, we explore the part of
the machine that is responsible for implementing these operations: the control
unit of the CPU. In this context, we view the machine at the

microarchitecture

level (the Microprogrammed/Hardwired Control level in Figure 1-4.) The
microarchitecture consists of the control unit and the programmer-visible regis-
ters, functional units such as the ALU, and any additional registers that may be
required by the control unit.

A given ISA may be implemented with different microarchitectures. For exam-
ple, the Intel Pentium ISA has been implemented in different ways, all of which
support the same ISA. Not only Intel, but a number of competitors such as
AMD and Cyrix have implemented Pentium ISAs. A certain microarchitecture
might stress high instruction execution speed, while another stresses low power
consumption, and another, low processor cost. Being able to modify the microar-
chitecture while keeping the ISA unchanged means that processor vendors can
take advantage of new IC and memory technology while affording the user
upward compatibility for their software investment. Programs run unchanged on
different processors as long as the processors implement the same ISA, regardless
of the underlying microarchitectures.

In this chapter we examine two polarizingly different microarchitecture
approaches: microprogrammed control units and hardwired control units, and
we examine them by showing how a subset of the ARC processor can be imple-
mented using these two design techniques.

THE CONTROL UNIT

 6

186

CHAPTER 6 THE CONTROL UNIT

6.1 Basics of the Microarchitecture

The functionality of the microarchitecture centers around the fetch-execute
cycle, which is in some sense the “heart” of the machine. As discussed in Chapter
4, the steps involved in the fetch-execute cycle are:

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.

3) Read operand(s) from main memory, if any.

4) Execute the instruction and store results.

5) Go to Step 1.

It is the microarchitecture that is responsible for making these five steps happen.
The microarchitecture fetches the next instruction to be executed, determines
which instruction it is, fetches the operands, executes the instruction, stores the
results, and then repeats.

The microarchitecture consists of a

data section

 which contains registers and an
ALU, and a

control section

, as illustrated in Figure 6-1. The data section is also

referred to as the

datapath

. Microprogrammed control uses a a special purpose

microprogram

, not visible to the user, to implement operations on the registers
and on other parts of the machine. Often, the microprogram contains many pro-
gram steps that collectively implement a single (macro)instruction.

Hardwired

Control Unit

Control Section

Registers

ALU

Datapath
(Data Section)

SYSTEM BUS

Figure 6-1 High level view of a microarchitecture.

CHAPTER 6 THE CONTROL UNIT

187

control units adopt the view that the steps to be taken to implement an opera-
tion comprise states in a finite state machine, and the design proceeds using con-
ventional digital design methods (such as the methods covered in Appendix A.)
In either case, the datapath remains largely unchanged, although there may be
minor differences to support the differing forms of control. In designing the
ARC control unit, the microprogrammed approach will be explored first, and
then the hardwired approach, and for both cases the datapath will remain
unchanged.

6.2 A Microarchitecture for the ARC

In this section we consider a microprogrammed approach for designing the ARC
control unit. We begin by describing the datapath and its associated control sig-
nals.

The instruction set and instruction format for the ARC subset is repeated from
Chapter 4 in Figure 6-2. There are 15 instructions that are grouped into four for-
mats according to the leftmost two bits of the coded instruction. The Processor
Status Register

%psr

 is also shown.

6.2.1

THE DATAPATH

A datapath for the ARC is illustrated in Figure 6-3. The datapath contains 32
user-visible data registers (

%r0 – %r31

), the program counter (

%pc

), the
instruction register (

%ir

), the ALU, four temporary registers not visible at the
ISA level (

%temp0 – %temp3

), and the connections among these components.
The number adjacent to a diagonal slash on some of the lines is a simplification
that indicates the number of separate wires that are represented by the corre-
sponding single line.

Registers

%r0 – %r31

 are directly accessible by a user. Register

%r0

 always con-
tains the value 0, and cannot be changed. The

%pc

 register is the program
counter, which keeps track of the next instruction to be read from the main
memory. The user has direct access to

%pc

 only through the

call

 and

jmpl

instructions. The temporary registers are used in interpreting the ARC instruc-
tion set, and are not visible to the user. The

%ir

 register holds the current
instruction that is being executed. It is not visible to the user.

188

CHAPTER 6 THE CONTROL UNIT

The ALU

The ALU performs one of 16 operations on the A and B busses according to the
table shown in Figure 6-4. For every ALU operation, the 32-bit result is placed
on the C bus, unless it is blocked by the C bus MUX when a word of memory is
placed onto the C bus instead.

ld Load a register from memory

Mnemonic Meaning

st

sethi

andcc

addcc

call

jmpl

be

orcc

orncc

Store a register into memory

Load the 22 most significant bits of a register

Bitwise logical AND

Add

Branch on overflow

Call subroutine

Jump and link (return from subroutine call)

Branch if equal

Bitwise logical OR

Bitwise logical NOR

bneg

bcs

Branch if negative

Branch on carry

srl Shift right (logical)

bvs

ba Branch always

op3 (op=10)

010000
010001
010010
010110
100110
111000

addcc
andcc
orcc
orncc
srl
jmpl

0001
0101
0110
0111
1000

cond

be
bcs
bneg
bvs
ba

branch

010
100

op2

branch
sethi

Inst.

00
01
10
11

op

SETHI/Branch
CALL
Arithmetic
Memory

Format

000000
000100

ld
st

op3 (op=11)

op

CALL format disp30

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 1

SETHI Format imm22

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rd

disp220 cond

0 0

0 0Branch Format

op2

op2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

1

Memory Formats
1

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

Arithmetic
Formats

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

0

0

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

i

PSR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

z v cn

Figure 6-2 Instruction subset and instruction formats for the ARC.

CHAPTER 6 THE CONTROL UNIT

189

The

ANDCC

 and

AND

 operations perform a bit-by-bit logical AND of corre-
sponding bits on the A and B busses. Note that only operations that end with

%r0
A bus B busC bus

F1
F2

ALU

32

32

4

%r1

64-to-32
MUX

C Bus
MUX

n, z, v, c

F0

C
Decoder %r5

%pc

%temp0

%r2

%r3

%r4

%r6

%r7

%r8

%r9

%r10

%r30

%r31

B
Decoder

F3

6

c1

c37

37 38 b0

b37

6

A
Decoder

38 a0

a37

6

D
at

a
Fr

om
 M

ai
n

M
em

or
y

MUX Control
Line (From

Control Unit)

%temp1

%temp2

%temp3

%ir

D
ata T

o M
ain

M
em

ory

A
dd

re
ss

 T
o

M
ai

n
M

em
or

y

CLOCK
UNIT

0

1

2

3

4

5

6

7

8

9

10

30

31

32

33

34

35

36

37

32

From
Control

Unit

From Control
Unit

Set Condition Codes (SCC)

32

32

.

.

.

To Control
Unit

24

Figure 6-3 The datapath of the ARC.

190

CHAPTER 6 THE CONTROL UNIT

“

CC

” affect the condition codes, and so

ANDCC

 affects the condition codes
whereas

AND

 does not. (There are times when we wish to execute arithmetic and
logic instructions without disturbing the condition codes.) The

ORCC

 and

OR

operations perform a bit-by-bit logical OR of corresponding bits on the A and B
busses. The

NORCC

 and

NOR

 operations perform a bit-by-bit logical NOR of
corresponding bits on the A and B busses. The

ADDCC

 and

ADD

 operations
carry out addition using two’s complement arithmetic on the A and B busses.

The SRL (shift right logical) operation shifts the contents of the A bus to the
right by the amount specified on the B bus (from 0 to 31 bits). Zeros are copied
into the leftmost bits of the shifted result, and the rightmost bits of the result are
discarded.

LSHIFT2

 and

LSHIFT10

 shift the contents of the A bus to the left
by two and 10 bits, respectively. Zeros are copied into the rightmost bits.

SIMM13

 retrieves the least significant 13 bits of the A bus, and places zeros in
the 19 most significant bits.

SEXT13

 performs a sign extension of the 13 least
significant bits on the A bus to form a 32-bit word. That is, if the leftmost bit of
the 13 bit group is 1, then 1’s are copied into the 19 most significant bits of the
result, otherwise, 0’s are copied into the 19 most significant bits of the result. The

INC

 operation increments the value on the A bus by 1, and the

INCPC

 opera-
tion increments the value on the A bus by four, which is used in incrementing

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

F1 F0

ANDCC (A, B)

ORCC (A, B)

NORCC (A, B)

ADDCC (A, B)

SRL (A, B)

AND (A, B)

OR (A, B)

NOR (A, B)

ADD (A, B)

LSHIFT2 (A)

LSHIFT10 (A)

SIMM13 (A)

SEXT13 (A)

INC (A)

INCPC (A)

RSHIFT5 (A)

Operation

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

F2 Changes Condition Codes

yes
yes
yes
yes
no
no
no
no
no
no
no
no
no
no
no
no

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

F3

Figure 6-4 ARC ALU operations.

CHAPTER 6 THE CONTROL UNIT

191

the PC register by one word (four bytes).

INCPC

 can be used on any register
placed on the A bus.

The

RSHIFT5

 operation shifts the operand on the A bus to the right by 5 bits,
copying the leftmost bit (the sign bit) into the 5 new bits on the left. This has the
effect of performing a 5-bit sign extension. When applied three times in succes-
sion to a 32-bit instruction, this operation also has the effect of placing the left-
most bit of the

COND

 field in the Branch format (refer to Figure 6-2) into the
position of bit 13. This operation is useful in decoding the Branch instructions,
as we will see later in the chapter. The sign extension for this case is inconsequen-
tial.

Every arithmetic and logic operation can be implemented with just these ALU
operations. As an example, a subtraction operation can be implemented by form-
ing the two’s complement negative of the subtrahend (making use of the

NOR

operation and adding 1 to it with

INC

) and then performing addition on the
operands. A shift to the left by one bit can be performed by adding a number to
itself. A “do-nothing” operation, which is frequently needed for simply passing
data through the ALU without changing it, can be implemented by logically
ANDing an operand with itself and discarding the result in

%r0

. A logical XOR
can be implemented with the AND, OR, and NOR operations, making use of
DeMorgan’s theorem (see problem 6.5).

The ALU generates the

c

,

n

,

z

, and

v

 condition codes which are true for a carry,
negative, zero, or overflow result, respectively. The condition codes are changed
only for the operations indicated in Figure 6-4. A signal (SCC) is also generated
that tells the

%psr

 register when to update the condition codes.

The ALU can be implemented in a number of ways. For the sake of simplicity,
let us consider using a

lookup table

 (LUT) approach. The ALU has two 32-bit
data inputs

A

 and

B

, a 32-bit data output

C

, a four-bit control input

F

, a four-bit
condition code output (

N, V, C, Z

), and a signal (SCC) that sets the flags in the

%psr

 register. We can decompose the ALU into a cascade of 32 LUTs that
implement the arithmetic and logic functions, followed by a

barrel shifter

 that
implements the shifts. A block diagram is shown in Figure 6-5.

The barrel shifter shifts the input word by an arbitrary amount (from 0 to 31
bits) according to the settings of the control inputs. The barrel shifter performs
shifts in levels, in which a different bit of the Shift Amount (SA) input is
observed at each level. A partial gate-level layout for the barrel shifter is shown in

192

CHAPTER 6 THE CONTROL UNIT

Figure 6-6. Starting at the bottom of the circuit, we can see that the outputs of
the bottom stage will be the same as the inputs to that stage if the SA

0

 bit is 0. If
the SA

0

 bit is 1, then each output position will take on the value of its immediate
left or right neighbor, according to the direction of the shift, which is indicated
by the Shift Right input. At the next higher level, the method is applied again,
except that the SA

1 bit is observed and the amount of the shift is doubled. The
process continues until bit SA4 is observed at the highest level. Zeros are copied
into positions that have no corresponding inputs. With this structure, an arbi-
trary shift from 0 to 31 bits to the left or the right can be implemented.

Each of the 32 ALU LUTs is implemented (almost) identically, using the same
lookup table entries, except for changes in certain positions such as for the INC
and INCPC operations (see problem Figure 6.20). The first few entries for each
LUT are shown in Figure 6-7. The barrel shifter control LUT is constructed in a
similar manner, but with different LUT entries.

ALU
LUT0

b0 a0

ALU
LUT1

b1 a1

ALU
LUT30

b30 a30

ALU
LUT31

b31 a31

C c0c1c30c31

carry

BARREL
SHIFTER

z0z1z30z31

. . .

F0:3

Barrel Shifter
Control LUT

b0-4

Direction of Shift

Shift Amount (SA)
5

NV Z

. . .

SCC: Set Condition Codes

F3 F2

0

2

4

4

4

Figure 6-5 Block diagram of the 32-bit ALU.

CHAPTER 6 THE CONTROL UNIT 193

The condition code bits n, z, v, and c are implemented directly. The n and c
bits are taken directly from the c31 output of the barrel shifter and the carry-out
position of ALU LUT31, respectively. The z bit is computed as the NOR over
the barrel shifter outputs. The z bit is 1 only if all of the barrel shifter outputs are
0. The v (overflow) bit is set if the carry into the most significant position is dif-
ferent than the carry out of the most significant position, which is implemented
with an XOR gate.

Only the operations that end in “CC” should set the condition codes, and so a
signal is generated that informs the condition codes to change, as indicated by
the label “SCC: Set Condition Codes.” This signal is true when both F3 and F2
are false.

The Registers

All of the registers are composed of falling edge-triggered D flip-flops (see Appen-

c31 c30 c1 c0

SA0

. . .

Shift Right

SA1

. . .

Shift Right

.

.
.

Bit 31 Bit 30 Bit 1 Bit 0

Bit 29 Bit 28

Bit 3 Bit 2

Bit 29

Bit 2

Figure 6-6 Gate-level layout of barrel shifter.

194 CHAPTER 6 THE CONTROL UNIT

dix A). This means that the outputs of the flip-flops do not change until the
clock makes a transition from high to low (the falling edge of the clock). The reg-
isters all take a similar form, and so we will only look at the design of register
%r1. All of the datapath registers are 32 bits wide, and so 32 flip-flops are used
for the design of %r1, which is illustrated in Figure 6-8.

The CLK input to register %r1 is ANDed with the select line (c1) from the C
Decoder. This ensures that %r1 only changes when the control section instructs
it to change. The data inputs to %r1 are taken directly from the corresponding

F3

0
0
0
0
0
0
0
0
0
0
0
0
0
0

F2

0
0
0
0
0
0
0
0
0
0
0
0
0
0

F1

0
0
0
0
0
0
0
0
0
0
0
0
0
0

F0

0
0
0
0
0
0
0
0
1
1
1
1
1
1

Carry
In
0
0
0
0
1
1
1
1
0
0
0
0
1
1
.
.
.

ai

0
0
1
1
0
0
1
1
0
0
1
1
0
0

bi

0
1
0
1
0
1
0
1
0
1
0
1
0
1

zi

0
0
0
1
0
0
0
1
0
1
1
1
0
1

Carry
Out
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
.

A
N
D
C
C

O
R
C
C

Figure 6-7 Truth table for most of the ALU LUTs.

CLK
QD

C31

Write select (from c1
bit of C Decoder)

A31 B31

QD

C30

A30 B30

QD

C0

A0 B0

. . .

. . .
A bus enable (from
a1 bit of A Decoder)

B bus enable (from
b1 bit of B Decoder)

. . .

Data inputs from C Bus

Data outputs to B BusData outputs to A Bus

Figure 6-8 Design of register %r1.

CHAPTER 6 THE CONTROL UNIT 195

lines of the C bus. The outputs are written to the corresponding lines of the A
and B busses through tri-state buffers, which are “electrically disconnected”
unless their enable inputs are set to 1. The outputs of the buffers are enabled
onto the A and B busses by the a1 and b1 outputs of the A and B decoders,
respectively. If neither a1 nor b1 are high (meaning they are equal to 1), then the
outputs of %r1 are electrically disconnected from both the A and B busses since
the tri-state buffers are disabled.

The remaining registers take a similar form, with a few exceptions. Register %r0
always contains a 0, which cannot be changed. Register %r0 thus has no inputs
from the C bus nor any inputs from the C decoder, and does not need flip-flops
(see Problem 6.11). The %ir register has additional outputs that correspond to
the rd, rs1, rs2, op, op2, op3, and bit 13 fields of an instruction, as illus-
trated in Figure 6-9. These outputs are used by the control section in interpreting

an instruction as we will see in Section 6.2.4.

The A, B, and C decoders shown in Figure 6-3 simplify register selection. The
six-bit inputs to the decoders select a single register for each of the A, B, and C
busses. There are 26 = 64 possible outputs from the decoders, but there are only
38 data registers. The index shown to the left of each register (in base 10) in Fig-
ure 6-3 indicates the value that must be applied to a decoder input to select the
corresponding register. The 0 output of the C decoder is not used because %r0
cannot be written. Indices that are greater than 37 do not correspond to any reg-
isters, and are free to be used when no registers are to be connected to a bus.

6.2.2 THE CONTROL SECTION

The entire microprogrammed ARC microarchitecture is shown in Figure 6-10.
The figure shows the datapath, the control unit, and the connections between

Data inputs from C Bus

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
fields

C0C31

Instruction Register %ir

op

op2

op3

rd rs1 rs2

bit 13

Figure 6-9 Outputs to control unit from register %ir.

196 CHAPTER 6 THE CONTROL UNIT

them. At the heart of the control unit is a 2048 word × 41 bit read-only memory
(ROM) that contains values for all of the lines that must be controlled to imple-
ment each user-level instruction. The ROM is referred to as a control store in
this context. Each 41-bit word is called a microinstruction. The control unit is
responsible for fetching microinstructions and executing them, much in the

32

A
 b

us

B
 b

us

C
 b

us

2048 word × 41 bit Control
Store

CS Address MUX

Jump

Control
branch

logic (CBL)

F1
F2ALU

Microcode
Instruction

Register
(MIR)

CLOCK
UNIT

41

11

11

MAIN MEMORY
WRRD

Data Section (Datapath)

32

Address

Data In

00 = Next
01 = Jump
10 = Inst. Dec.

4

8

2

Decode

1 0 0

4

232 byte
address
space

32

3

Data Out

64-to-32
MUX

C Bus
MUX

%psr

n, z, v, c

F0

Next

11

Control Store Address
Incrementer (CSAI)

Acknowledge (ACK)

To C
Decoder

%i
r

C MUX

0, rd

Control Section

A MUX

0, rs1

To B Decoder

B MUX

0, rs2

F3

4

1

IR[30,31,19-24]

6 5

6

MIR
C field

S
el

ec
t

MIR
A field

MIR
B field

6

6

5 6

S
elect

Select

Scratchpad

To A Decoder

rd rs2 rs1 ops

I
R
[
1
3
]

5 6

Set Condition Codes

%ir

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

Figure 6-10 The microarchitecture of the ARC.

CHAPTER 6 THE CONTROL UNIT 197

same way as user-level ARC macroinstructions are fetched and executed. This
microinstruction execution is controlled by the microprogram instruction regis-
ter (MIR), the processor status register (%psr), and a mechanism for determin-
ing the next microinstruction to be executed: the Control Branch Logic (CBL)
unit and the Control Store (CS) Address MUX. A separate PC for the micropro-
gram is not needed to store the address of the next microinstruction, because it is
recomputed on every clock cycle and therefore does not need to be stored for
future cycles.

When the microarchitecture begins operation (at power-on time, for example), a
reset circuit (not shown) places the microword at location 0 in the control store
into the MIR and executes it. From that point onward, a microword is selected
for execution from either the Next, the Decode, or the Jump inputs to the CS
Address MUX, according to the settings in the COND field of the MIR and the
output of the CBL logic. After each microword is placed in the MIR, the datap-
ath performs operations according to the settings in the individual fields of the
MIR. This process is detailed below.

A microword contains 41 bits that comprise 11 fields as shown in Figure 6-11.

Starting from the left, the A field determines which of the registers in the datap-
ath are to be placed on the A bus. The bit patterns for the registers correspond to
the binary representations of the base 10 register indices shown in Figure 6-3
(000000 – 100101). The AMUX field selects whether the A Decoder takes its
input from the A field of the MIR (AMUX = 0) or from the rs1 field of %ir
(AMUX = 1).

In a similar manner, the B field determines which of the registers in the datapath
are to be placed on the B bus. The BMUX field selects whether the B Decoder
takes its input from the B field of the MIR (BMUX = 0) or from the rs2 field of
%ir (BMUX = 1). The C field determines which of the registers in the datapath
is to be written from the C bus. The CMUX field selects whether the C Decoder
takes its input from the C field of the MIR (CMUX = 0) or from the rd field of

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

Figure 6-11 The microword format.

198 CHAPTER 6 THE CONTROL UNIT

%ir (CMUX = 1). Since %r0 cannot be changed, the bit pattern 000000 can be
used in the C field when none of these registers are to be changed.

The RD and WR lines determine whether the memory will be read or written,
respectively. A read takes place if RD = 1, and a write takes place if WR = 1. Both
the RD and WR fields cannot be set to 1 at the same time, but both fields can be
0 if neither a read nor a write operation is to take place. For both RD and WR,
the address for the memory is taken directly from the A bus. The data input to
the memory is taken from the B bus, and the data output from the memory is
placed on the C bus. The RD line controls the 64-to-32 C Bus MUX, which
determines whether the C bus is loaded from the memory (RD = 1) or from the
ALU (RD = 0).

The ALU field determines which of the ALU operations is performed according
to the settings shown in Figure 6-4. All 16 possible ALU field bit patterns corre-
spond to valid ALU operations. This means that there is no way to “turn the
ALU off” when it is not needed, such as during a read or write to memory. For
this situation, an ALU operation should be selected that has no unwanted side
effects. For example, ANDCC changes the condition codes and would not be
appropriate, whereas the AND operation does not affect the condition codes, and
would therefore be appropriate.

The COND (conditional jump) field instructs the microcontroller to take the
next microword from either the next control store location, or from the location
in the JUMP ADDR field of the MIR, or from the opcode bits of the instruction
in %ir. The COND field is interpreted according to the table shown in Figure
6-12. If the COND field is 000, then no jump is taken, and the Next input to

the CS Address MUX is used. The Next input to the CS Address MUX is com-

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

C1 C0

Use NEXT ADDR
Use JUMP ADDR if n = 1
Use JUMP ADDR if z = 1
Use JUMP ADDR if v = 1
Use JUMP ADDR if c = 1
Use JUMP ADDR if IR[13] = 1
Use JUMP ADDR
DECODE

Operation

0
0
0
0
1
1
1
1

C2

Figure 6-12 Settings for the COND field of the microword.

CHAPTER 6 THE CONTROL UNIT 199

puted by the control store address incrementer (CSAI) shown in Figure 6-10,
which increments the current output of the CS Address MUX by 1. If the
COND field is 001, 010, 011, 100, or 101, then a conditional jump is taken to
the control store location in the JUMP ADDR field, according to the value of
the n, z, v, or c flags, or bit 13 of %ir, respectively. The syntax “IR[13]” means
“bit 13 of the instruction register %ir.” If the COND field is 110, then an
unconditional jump is taken.

The bit pattern 111 is used in the COND field when an instruction is being
decoded. When the COND field is 111, then the next control store location that
is copied into the MIR is taken from neither the Next input to the CS Address
MUX nor the Jump input, but is taken from a combination of 11 bits created by
appending 1 to the left of bits 30 and 31 of %ir and appending 00 to the right of
bits 19-24 of %ir. This DECODE address format is shown in Figure 6-13. The

purpose of using this addressing scheme is to allow an instruction to be decoded
in a single step, by branching to a different location according to the settings in
the op, op2, and op3 fields of an instruction.

Finally, the JUMP ADDR field appears in the rightmost 11 bits of the micro-
word format. There are 211 microwords in the control store, and so 11 bits are
needed in the JUMP ADDR field in order to jump to any microstore location.

6.2.3 TIMING

The microarchitecture operates on a two-phase clock cycle, in which the master
sections of all of the registers change on the rising edge of the clock and the slave
sections change on the falling edge of the clock as shown in Figure 6-14. All of
the registers use falling edge-triggered master/slave D flip-flops except for %r0
which does not need flip-flops. On the falling edge of the clock, data stored in
the master sections of the registers are clocked into the slave sections. This makes
the data available for operations involving the ALU. While the clock is low, the
ALU, CBL, and MUX functions are performed, which settle in time for the ris-

op

1 0 0

op2

op3

31 30 24 23 22 21 20 19IR bits

Figure 6-13 DECODE format for a microinstruction address.

200 CHAPTER 6 THE CONTROL UNIT

ing edge of the clock. On the rising edge of the clock, the new values of the regis-
ters are written into the master sections. The registers settle while the clock is
high, and the process then repeats.

6.2.4 DEVELOPING THE MICROPROGRAM

In a microprogrammed architecture, instructions are interpreted by the micro-
program in the control store. The microprogram is often referred to as firmware
because it bridges the gap between the hardware and the software. The microar-
chitecture shown in Figure 6-10 needs firmware in order to execute ARC instruc-
tions, and one possible coding is described in this section.

A portion of a microprogram that implements the fetch-execute cycle for the
ARC is shown in Figure 6-15. In the control store, each microstatement is stored
in coded form (1’s and 0’s) in a single microword. For simplicity, the
micro-assembly language shown in Figure 6-15 is loosely defined here, and we
will leave out labels, pseudo-ops, etc., that we would normally associate with a
full-featured assembly language. Translation to the 41-bit format used in the
microstore is not difficult to perform by hand for a small microprogram, and is
frequently performed manually in practice (as we will do here) rather than creat-
ing a suite of software tools for such a small program.

Although our micro-assembly language is indeed an assembly language, it is not
the same kind of assembly language as the ARC that we studied in Chapter 4.
The ARC assembly language is visible to the user, and is used for coding general
purpose programs. Our micro-assembly language is used for coding firmware,
and is not visible to the user. The sole purpose of the firmware is to interpret a
user-visible instruction set. A change to the instruction set involves changes to

Clock

Settling time for slave sections
of registers. Perform ALU
functions. n, z, v,and c flags
become stable.

Master sections settle.

Master sections of
registers loaded on
rising edge

Slave sections of
registers loaded on
falling edge

Figure 6-14 Timing relationships for the registers.

CHAPTER 6 THE CONTROL UNIT 201

the firmware, whereas a change in user-level software has no influence on the
firmware.

Each statement in the microprogram shown in Figure 6-15 is preceded by a dec-
imal number that indicates the address of the corresponding microword in the
2048-word control store. The address is followed by a colon. The operation
statements follow the address, and are terminated by semicolons. An optional

0000: R[ir] ← AND(R[pc],R[pc]); READ; / Read an ARC instruction from main memory
0001: DECODE; / 256-way jump according to opcode
00// / sethi
1152: R[rd] ← LSHIFT10(ir); GOTO 2047; / Copy imm22 field to target register
00// / call
1280: R[15] ← AND(R[pc],R[pc]); / Save %pc in %r15
1281: R[temp0] ← ADD(R[ir],R[ir]); / Shift disp30 field left
1282: R[temp0] ← ADD(R[temp0],R[temp0]); / Shift again
1283: R[pc] ← ADD(R[pc],R[temp0]); / Jump to subroutine
 GOTO 0;
0//0 / addcc
1600: IF IR[13] THEN GOTO 1602; / Is second source operand immediate?
1601: R[rd] ← ADDCC(R[rs1],R[rs2]); / Perform ADDCC on register sources
 GOTO 2047;
1602: R[temp0] ← SEXT13(R[ir]); / Get sign extended simm13 field
1603: R[rd] ← ADDCC(R[rs1],R[temp0]); / Perform ADDCC on register/simm13
 GOTO 2047; / sources
00// / andcc
1604: IF IR[13] THEN GOTO 1606; / Is second source operand immediate?
1605: R[rd] ← ANDCC(R[rs1],R[rs2]); / Perform ANDCC on register sources
 GOTO 2047;
1606: R[temp0] ← SIMM13(R[ir]); / Get simm13 field
1607: R[rd] ← ANDCC(R[rs1],R[temp0]); / Perform ANDCC on register/simm13
 GOTO 2047; / sources
00// / orcc
1608: IF IR[13] THEN GOTO 1610; / Is second source operand immediate?
1609: R[rd] ← ORCC(R[rs1],R[rs2]); / Perform ORCC on register sources
 GOTO 2047;
1610: R[temp0] ← SIMM13(R[ir]); / Get simm13 field
1611: R[rd] ← ORCC(R[rs1],R[temp0]); / Perform ORCC on register/simm13 sources
 GOTO 2047;
00// / orncc
1624: IF IR[13] THEN GOTO 1626; / Is second source operand immediate?
1625: R[rd] ← NORCC(R[rs1],R[rs2]); / Perform ORNCC on register sources
 GOTO 2047;
1626: R[temp0] ← SIMM13(R[ir]); / Get simm13 field
1627: R[rd] ← NORCC(R[rs1],R[temp0]); / Perform NORCC on register/simm13
 GOTO 2047; / sources
00// / srl
1688: IF IR[13] THEN GOTO 1690; / Is second source operand immediate?
1689: R[rd] ← SRL(R[rs1],R[rs2]); / Perform SRL on register sources
 GOTO 2047;
1690: R[temp0] ← SIMM13(R[ir]); / Get simm13 field
1691: R[rd] ← SRL(R[rs1],R[temp0]); / Perform SRL on register/simm13 sources
 GOTO 2047;
00// / jmpl
1760: IF IR[13] THEN GOTO 1762; / Is second source operand immediate?
1761: R[pc] ← ADD(R[rs1],R[rs2]); / Perform ADD on register sources
 GOTO 0;

Address Operation Statements Comment

Figure 6-15 Partial microprogram for the ARC. Microwords are shown in logical sequence

(not numerical sequence.)

202 CHAPTER 6 THE CONTROL UNIT

comment follows the operation field and begins with a slash ‘/.’ The comment
terminates at the end of the line. More than one operation is allowed per line, as
long as all of the operations can be performed in a single instruction cycle. The
ALU operations come from Figure 6-4, and there are a few others as we will see.
Note that the 65 statements are shown in logical sequence, rather than in numer-
ical sequence.

Before the microprogram begins execution, the PC is set up with the starting
address of a program that has been loaded into the main memory. This may hap-

1762: R[temp0] ← SEXT13(R[ir]); / Get sign extended simm13 field
1763: R[pc] ← ADD(R[rs1],R[temp0]); / Perform ADD on register/simm13 sources
 GOTO 0;
00// / ld
1792: R[temp0] ← ADD(R[rs1],R[rs2]); / Compute source address
 IF IR[13] THEN GOTO 1794;
1793: R[rd] ← AND(R[temp0],R[temp0]); / Place source address on A bus
 READ; GOTO 2047;
1794: R[temp0] ← SEXT13(R[ir]); / Get simm13 field for source address
1795: R[temp0] ← ADD(R[rs1],R[temp0]); / Compute source address
 GOTO 1793;
00// / st
1808: R[temp0] ← ADD(R[rs1],R[rs2]); / Compute destination address
 IF IR[13] THEN GOTO 1810;
1809: R[ir] ← RSHIFT5(R[ir]); GOTO 40; / Move rd field into position of rs2 field
 40: R[ir] ← RSHIFT5(R[ir]);
 41: R[ir] ← RSHIFT5(R[ir]);
 42: R[ir] ← RSHIFT5(R[ir]);
 43: R[ir] ← RSHIFT5(R[ir]);
 44: R[0] ← AND(R[temp0], R[rs2]); / Place destination address on A bus and
 WRITE; GOTO 2047; / place operand on B bus
1810: R[temp0] ← SEXT13(R[ir]); / Get simm13 field for destination address
1811: R[temp0] ← ADD(R[rs1],R[temp0]); / Compute destination address
 GOTO 1809;
00// / Branch instructions: ba, be, bcs, bvs, bneg
1088: GOTO 2; / Decoding tree for branches
 2: R[temp0] ← LSHIFT10(R[ir]); / Sign extend the 22 LSB’s of %temp0
 3: R[temp0] ← RSHIFT5(R[temp0]);
 4: R[temp0] ← RSHIFT5(R[temp0]); / bits. RSHIFT5 does sign extension.
 5: R[ir] ← RSHIFT5(R[ir]); / Move COND field to IR[13] by
 6: R[ir] ← RSHIFT5(R[ir]);
 7: R[ir] ← RSHIFT5(R[ir]);
 8: IF IR[13] THEN GOTO 12; / Is it ba?
 R[ir] ← ADD(R[ir],R[ir]);
 9: IF IR[13] THEN GOTO 13; / Is it not be?
 R[ir] ← ADD(R[ir],R[ir]);
 10: IF Z THEN GOTO 12; / Execute be
 R[ir] ← ADD(R[ir],R[ir]);
 11: GOTO 2047; / Branch for be not taken
 12: R[pc] ← ADD(R[pc],R[temp0]); / Branch is taken
 GOTO 0;
 13: IF IR[13] THEN GOTO 16; / Is it bcs?
 R[ir] ← ADD(R[ir],R[ir]);
 14: IF C THEN GOTO 12; / Execute bcs
 15: GOTO 2047; / Branch for bcs not taken
 16: IF IR[13] THEN GOTO 19; / Is it bvs?
 17: IF N THEN GOTO 12; / Execute bneg
 18: GOTO 2047; / Branch for bneg not taken
 19: IF V THEN GOTO 12; / Execute bvs
 20: GOTO 2047; / Branch for bvs not taken
2047: R[pc] ← INCPC(R[pc]); GOTO 0; / Increment %pc and start over

/ by shifting left 10 bits, then right 10

/ applying RSHIFT5 three times. (The
/ sign extension is inconsequential.)

/ by shifting to the right by 25 bits.

Figure 6-15 (cont’).

CHAPTER 6 THE CONTROL UNIT 203

pen as the result of an initialization sequence when the computer is powered on,
or by the operating system during the normal course of operation.

The first task in the execution of a user-level program is to bring the instruction
pointed to by the PC from the main memory into the IR. Recall from Figure
6-10 that the address lines to main memory are taken from the A bus. In line 0,
the PC is loaded onto the A bus, and a Read operation is initiated to memory.
The notation “R[x]” means “register x,” in which x is replaced with one of the
registers in the datapath, and so “R[1]” means “register %r1,” “R[ir]” means
“register %ir,” and “R[rs1]” means the register that appears in the 5-bit rs1
field of an instruction (refer to Figure 6-2.)

The expression “AND(R[pc],R[pc])” simply performs a logical AND of %pc
with itself in a literal interpretation. This operation is not very useful in a logical
sense, but what we are interested in are the side effects. In order to place %pc
onto the A bus, we have to choose an ALU operation that uses the A bus but
does not affect the condition codes. There is a host of alternative choices that can
be used, and the AND approach is arbitrarily chosen here. Note that the result of
the AND operation is discarded because the C bus MUX in Figure 6-10 only
allows the data output from main memory onto the C bus during a read opera-
tion.

A read operation normally takes more time to complete than the time required
for one microinstruction to execute. The access time of main memory can vary
depending on the memory organization, as we will see in Chapter 7. In order to
account for variations in the access times of memory, the control store address
incrementer (CSAI) does not increment the address until an acknowledge (ACK)
signal is sent which indicates the memory has completed its operation.

Flow of control within the microprogram defaults to the next higher numbered
statement unless a GOTO operation or a DECODE operation is encountered,
and so microword 1 (line 1) is read into the MIR on the next cycle. Notice that
some of the microcode statements in Figure 6-15 take up more than one line on
the page, but are part of a single microinstruction. See, for example, lines 1283
and 1601.

Now that the instruction is in the IR as a result of the read operation in line 0,
the next step is to decode the opcode fields. This is performed by taking a
256-way branch into the microcode as indicated by the DECODE keyword in line
1 of the microprogram. The 11-bit pattern for the branch is constructed by

204 CHAPTER 6 THE CONTROL UNIT

appending a 1 to the left of bits 30 and 31 of the IR, followed by bits 19-24 of
the IR, followed by the pattern 00. After the opcode Þelds are decoded, execu-
tion of the microcode continues according to which of the 15 ARC instructions
is being interpreted.

As an example of how the decode operation works, consider the addcc instruc-
tion. According to the Arithmetic instruction format in Figure 6-2, the op Þeld
is 10 and the op3 Þeld is 010000. If we append a 1 to the left of the op bit pat-
tern, followed by the op3 bit pattern, followed by 00, the DECODE address is
11001000000 = (1600)10. This means that the microinstructions that interpret
the addcc instruction begin at control store location 1600.

A number of DECODE addresses should never arise in practice. There is no Arith-
metic instruction that corresponds to the invalid op3 Þeld 111111, but if this
situation does arise, possibly due to an errant program, then a microstore routine
should be placed at the corresponding DECODE address 11011111100 =
(1788)10 in order to deal with the illegal instruction. These locations are left
blank in the microprogram shown in Figure 6-15.

Instructions in the SETHI/Branch and Call formats do not have op3 Þelds. The
SETHI/Branch formats have op and op2 Þelds, and the Call format has only
the op Þeld. In order to maintain a simple decoding mechanism, we can create
duplicate entries in the control store. Consider the SETHI format. If we follow
the rule for constructing the DECODE address, then the DECODE address will
have a 1 in the leftmost position, followed by 00 for the op Þeld, followed by
100 which identiÞes SETHI in bit positions 19 Ð 21, followed by the bits in
positions 22 Ð 24 of the IR, followed by 00, resulting in the bit pattern
100100xxx00 where xxx can take on any value, depending on the imm22 Þeld.
There are eight possible bit patterns for the xxx bits, and so we need to have
duplicate SETHI codes at locations 10010000000, 10010000100,
10010001000, 10010001100, 10010010000, 10010010100, 10010011000,
and 10010011100. DECODE addresses for the Branch and CALL formats are
constructed in duplicate locations in a similar manner. Only the lowest addressed
version of each set of duplicate codes is shown in Figure 6-15.

Although this method of decoding is fast and simple, a large amount of control
store memory is wasted. An alternative approach that wastes much less space is to
modify the decoder for the control store so that all possible branch patterns for
SETHI point to the same location, and the same for the Branch and Call format
instructions. For our microarchitecture, we will stay with the simpler approach

CHAPTER 6 THE CONTROL UNIT 205

and pay the price of having a large control store.

Consider now how the ld instruction is interpreted. The microprogram begins
at location 0, and at this point does not know that ld is the instruction that the
PC points to in main memory. Line 0 of the microprogram begins the Read
operation as indicated by the READ keyword, which brings an instruction into
the IR from the main memory address pointed to by the PC. For this case, let us
assume that the IR now contains the 32-bit pattern:

which is a translation of the ARC assembly code: ld %r5 + 80, %r2. Line 1
then performs a branch to control store address (11100000000)2 = (1792)10.

At line 1792, execution of the ld instruction begins. In line 1792, the immedi-
ate bit i is tested. For this example, i = 1, and so control is transferred to
microword 1794. If instead we had i = 0, then control would pass to the next
higher numbered microword, which is 1793 for this case. Line 1792 adds the
registers in the rs1 and rs2 fields of the instruction, in anticipation of a
non-immediate form of ld, but this only makes sense if i = 0, which it is not
for this example. The result that is stored in %temp0 is thus discarded when con-
trol is transferred to microword 1794, but this introduces no time penalty and
does not produce any unwanted side effects (ADD does not change the condition
codes).

In microword 1794, the simm13 field is extracted (using sign extension, as indi-
cated by the SEXT13 operation), which is added with the register in the rs1
field in microword 1795. Control is then passed to microword 1793 which is
where the READ operation takes place. Control passes to line 2047 where the PC
is incremented in anticipation of reading the next instruction from main mem-
ory. Since instructions are four bytes long and must be aligned on word bound-
aries in memory, the PC is incremented by four. Control then returns to line 0
where the process repeats. A total of seven microinstructions are thus executed in

11
op

00010
rd

000000
op3

00101
rs1

1
i

0000001010000
simm13

206 CHAPTER 6 THE CONTROL UNIT

interpreting the ld instruction. These microinstructions are repeated below:

The remaining instructions, except for branches, are interpreted similar to the
way ld is interpreted. Additional decoding is needed for the branch instructions
because the type of branch is determined by the COND field of the branch format
(bits 25 – 28), which is not used during a DECODE operation. The approach used
here is to shift the COND bits into IR[13] one bit at a time, and then jump to
different locations in the microcode depending on the COND bit pattern.

For branch instructions, the DECODE operation on line 2 of the microprogram
transfers control to location 1088. We need more space for the branch instruc-
tions than the four-word per instruction allocation, so line 1088 transfers control
to line 2 which is the starting address of a large section of available control store
memory.

Lines 2 – 4 extract the 22-bit displacement for the branch by zeroing the high
order 10 bits and storing the result in %temp0. This is accomplished by shifting
%ir to the left by 10 bits and storing it in %temp0, and then shifting the result
back to the right by 10 bits. (Notice that sign extension should be performed on
the displacement, which may be negative. We will leave it as it is to simplify the
discussion.) Lines 5 – 7 shift %ir to the right by 15 bits so that the most signifi-
cant COND bit (IR[28]) lines up in position IR[13], which allows the Jump
on IR[13]=1 operation to test each bit. Alternatively, we could shift the COND
field to IR[31] one bit at a time, and use the Jump on n condition to test each
bit.

Line 8 starts the branch decoding process, which is summarized in Figure 6-16.
If IR[28], which is now in IR[13], is set to 1, then the instruction is ba,
which is executed in line 12. Notice that control returns to line 0, rather than to
line 2047, so that the PC does not get changed twice for the same instruction.

If IR[28] is zero, then %ir is shifted to the left by one bit by adding it to itself,

0000: R[ir] ← AND(R[pc],R[pc]); READ; / Read an ARC instruction from main memory.
0001: DECODE; / 256-way jump according to opcode
1792: R[temp0] ← ADD(R[rs1],R[rs2]); / Compute source address
 IF IR[13] THEN GOTO 1794;

1794: R[temp0] ← SEXT13(R[ir]); / Get simm13 field for source address
1795: R[temp0] ← ADD(R[rs1],R[temp0]); Compute source address
 GOTO 1793;

1793: R[rd] ← AND(R[temp0],R[temp0]); / Place source address on A bus
 READ; GOTO 2047;

2047: R[pc] ← INCPC(R[pc]); GOTO 0; / Increment %pc and start over

CHAPTER 6 THE CONTROL UNIT 207

so that IR[27] lines up in position IR[13]. Bit IR[27] is tested in line 9. If
IR[27] is zero, then the be instruction is executed in line 10, otherwise %ir is
shifted to the left and IR[26] is then tested in line 13. The remaining branch
instructions are interpreted in a similar manner.

Microassembly Language Translation

A microassembly language microprogram must be translated into binary object
code before it is stored in the control store, just as an assembly language program
must be translated into a binary object form before it is stored in main memory.
Each line in the ARC microprogram corresponds to exactly one word in the con-
trol store, and there are no unnumbered forward references in the microprogram,
so we can assemble the ARC microprogram one line at a time in a single pass.
Consider assembling line 0 of the microprogram shown in Figure 6-15:

0: R[ir] ← AND(R[pc],R[pc]); READ;

bneg bvs

bcs

be

ba

IR[25]

IR[26]

IR[27]

IR[28]Line 8

Line 13

Line 16

Line 12

Line 19Line 17

Line 10

Line 14

cond
branch

1
1
0
1
0

25

be
bcs
bneg
bvs
ba

0
0
1
1
0

26

0
1
1
1
0

27

0
0
0
0
1

28

Line 9

0 1

0 1

0 1

0 1

Figure 6-16 Decoding tree for branch instructions, showing corresponding microprogram lines.

208 CHAPTER 6 THE CONTROL UNIT

We can fill in the fields of the 41-bit microword as shown below:

The PC is enabled onto both the A and B busses for the AND operation, which
transfers a word through the ALU without changing it. The A and B fields have
the bit pattern for the PC (3210 = 1000002). The AMUX and BMUX fields both
contain 0’s, since the inputs to these MUXes are taken from the MIR. The target
of the Read operation is the IR, which has a corresponding bit pattern of (3710 =
1001012) for the C field. The CMUX field contains a 0 because the input to the
CMUX is taken from the MIR. A read operation to memory takes place, and so
the RD field contains a 1 and the WR field contains a 0. The ALU field contains
0101, which corresponds to the AND operation. Note that the condition codes
are not affected, which would happen if ANDCC is used instead. The COND
field contains 000 since control passes to the next microword, and so the bit pat-
tern in the JUMP ADDR field does not matter. Zeros are arbitrarily placed in
the JUMP ADDR field.

The second microword implements the 256-way branch. For this case, all that
matters is that the bit pattern 111 appears in the COND field for the DECODE
operation, and that no registers, memory, or condition codes are disturbed. The
corresponding bit pattern is then:

A number of different bit patterns would also work for line 1. For example, any
bit patterns can appear in the A, B, or JUMP ADDR fields when a DECODE
operation takes place. The use of the zero bit patterns is an arbitrary choice. The
ALU field is 0101 which is for AND, which does not affect the condition codes.
Any other ALU operation that does not affect the condition codes can also be
used.

The remainder of the microprogram is translated in a similar manner. The trans-

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

000000 000000 001010100101000000000000001 1 1

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

000000 000000 000000000101111000000000000 0 0

CHAPTER 6 THE CONTROL UNIT 209

lated microprogram is shown in Figure 6-17, except for gaps where duplicate
branch code would appear, or where “illegal instruction” code would appear.

EXAMPLE

Consider adding an instruction called subcc to the microcoded implementation
of the ARC instruction set, which subtracts its second source operand from the
first, using two’s complement arithmetic. The new instruction uses the Arith-
metic format and an op3 field of 001100.

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

1 000001 00000 001010100101000

11111111111

0
0 000000 00000 000000000101111000000000001
1 010100 00000 000001001010110

00000000000

1152
1 000001 00000 011110000101000000000000001280
1 010101 01010 000010001000000000000000001281
1 000101 00010 000010001000000000000000001282
1 000001 00010 0000000010001101283
0 000000 00000 000000000101101110010000101600
0 000010 00001 0000010000111101601
1 010100 00000 000010001100000000000000001602
0 000011 00010 0000010000111101603
0 000000 00000 000000000101101110010001101604
0 000010 00001 0000010000001101605
1 010100 00000 000010001011000000000000001606
0 000011 00010 0000010000001101607
0 000000 00000 000000000101101110010010101608
0 000010 00001 0000010000011101609
1 010100 00000 000010001011000000000000001610
0 000011 00010 000001000001110

0

1611
0 000000 00000 000000000101101110010110101624
0 000010 00001 0000010000101101625
1 010100 00000 000010001011000000000000001626
0 000011 00010 000001000010111627
0 000000 00000 000000000101000110100110101688
0 000010 00001 0000010001001101689
1 010100 00000 000010001011000000000000001690
0 000011 00010 0000010001001101691
0 000000 00000 000000000101101110111000101760
0 000010 00001 000000001000110000000000001761
1 010100 00000 000010001100000000000000001762
0 000011 00010 000000001000110000000000001763

000010 00001 000010001000101111000000101792

11111111111

11111111111

11111111111

00000000000

11111111111

11111111111

11111111111

11111111111

11111111111

11111111111

11111111111

Microstore
Address

0

1
0
0
0
1
1
1
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Figure 6-17 Assembled microprogram for the ARC instruction subset.

210 CHAPTER 6 THE CONTROL UNIT

We need to modify the microprogram to add this new instruction. We start by
computing the starting location of subcc in the control store, by appending a
‘1’ to the left of the op field, which is 10, followed by the op3 field which is
001100, followed by 00. This results in the bit pattern 11000110000 which cor-
responds to control store location (1584)10. We can then create microassembly
code that is similar to the addcc microassembly code at location 1600, except
that the two’s complement negative of the subtrahend (the second source oper-
and) is formed before performing the addition. The subtrahend is complemented
by making use of the NOR operation, and 1 is added to it by using the INC oper-
ation. The subtraction is then completed by using the code for addcc. A

0 000000 000000 0000000010111020
1 000000 000001 0000000111011000000000002047

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

1 000101 000100 00001100101110111111111111793
1 010100 000001 00010001100000000000000001794
0 000011 000101 00010001000110111000000011795
0 000010 000011 00010001000101111000100101808
1 010100 000001 01010001111110000001010001809
1 010100 000001 010100011110000000000000040
1 010100 000001 010100011110000000000000041
1 010100 000001 010100011110000000000000042
1 010100 000001 010100011110000000000000043
1 000100 000010 000000101011101111111111144
1 010100 000001 00010001100000000000000001810
0 000011 000101 00010001000110111000100011811
0 000000 000000 00000000101110000000000101088
1 010100 000001 00010001010000000000000002
1 000100 000001 00010001111000000000000003
1 000100 000001 00010001111000000000000004
1 010100 000001 01010001111000000000000005
1 010100 000001 01010001111000000000000006
1 010100 000001 01010001111000000000000007
1 010101 010001 01010001000101000000011008
1 010101 010001 01010001000101000000011019
1 010101 010001 010100010000100000000110010
0 000000 000000 00000000101110

11111111111

11
1 000001 000101 000000010001100000000000012
1 010101 010101 010100010001010000001000013
0 000000 000000 000000001011000000000110014
0 000000 000000 0000000010111015
0 000000 000000 000000001011010000001001116
0 000000 000000 000000001010010000000110017
0 000000 000000 0000000010111018
0 000000 000000 000000001010110000000110019

11111111111

11111111111

11111111111

0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Figure 6-17 (Continued.)

CHAPTER 6 THE CONTROL UNIT 211

microassembly coding for subcc is shown below:

The corresponding microcode for one possible translation is then:

6.2.5 TRAPS AND INTERRUPTS

A trap is an automatic procedure call initiated by the hardware after an excep-
tional condition caused by an executing program, such as an illegal instruction,
overflow, underflow, dividing by zero, etc. When a trap occurs, control is trans-
ferred to a “trap handler” which is a routine that is part of the operating system.
The handler might do something like print a message and terminate the offend-
ing program.

One way to handle traps is to modify the microcode, possibly to check the status
bits. For instance, we can check the v bit to see if an overflow has occurred. The
microcode can then load an address into the PC (if a trap occurs) for the starting
location of the trap handler.

Normally, there is a fixed section of memory for trap handler starting addresses
where only a single word is allocated for each handler. This section of memory
forms a branch table that transfers control to the handlers, as illustrated in Fig-
ure 6-18. The reason for using a branch table is that the absolute addresses for
each type of trap can be embedded in the microcode this way, while the targets of
the jumps can be changed at the user level to handle traps differently.

1584: R[temp0] ← SEXT13(R[ir]); / Extract rs2 operand

 IF IR[13] THEN GOTO 1586; / Is second source immediate?

1585: R[temp0] ← R[rs2]; / Extract sign extended immediate operand

1586: R[temp0] ← NOR(R[temp0], R[0]); / Form one’s complement of subtrahend

1587: R[temp0] ← INC(R[temp0]); GOTO 1603; / Form two’s complement of subtrahend

■

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

01010 000001 00010001100101110001100101584

00000 00001 00010001000000000000000001585

00010 00000 00010000111000000000000001586

00010 00000 00010001101110110010000111587

1 0

0 0 1

1 0 1

1 0 1

0 0 0

0 0 0

0 0 0

0 0 0

212 CHAPTER 6 THE CONTROL UNIT

A historically common trap is for floating point instructions, which may be
emulated by the operating system if they are not implemented directly in hard-
ware. Floating point instructions have their own opcodes, but if they are not
implemented by the hardware (that is, the microcode does not know about
them) then they will generate an illegal instruction trap when an attempt is made
to execute them. When an illegal instruction occurs, control is passed to the ille-
gal instruction handler which checks to see if the trap is caused by a floating
point instruction, and then passes control to a floating point emulation routine
as appropriate for the cause of the trap. Although floating point units are nor-
mally integrated into CPU chips these days, this method is still used when
extending the instruction set for other instructions, such as graphics extensions
to the ISA.

Interrupts are similar to traps, but are initiated after a hardware exception such
as a user hitting a key on a keyboard, an incoming telephone call for a modem, a
power fluctuation, an unsafe operating temperature, etc. Traps are synchronous
with a running program, whereas interrupts are asynchronous. Thus, a trap will
always happen at the same place in the same program running with the same
data set, whereas the timing of interrupts is largely unpredictable.

When a key is pressed on an interrupt based keyboard, the keyboard asserts an
interrupt line on the bus, and the CPU then asserts an acknowledge line as soon
as it is ready (this is where bus arbitration comes in, which is covered in Chapter
8, if more than one device wants to interrupt at the same time). The keyboard
then places an interrupt vector onto the data bus which identifies itself to the

JUMP TO 2000

ContentsAddress Trap Handler
.
.
.

.

.

.

60 Illegal instruction

JUMP TO 300064 Overflow

JUMP TO 360068 Underflow

JUMP TO 522472 Zerodivide

JUMP TO 418076 Disk

JUMP TO 536480 Printer

JUMP TO 590884 TTY

88 TimerJUMP TO 6048

Figure 6-18 A branch table for trap handlers and interrupt service routines.

CHAPTER 6 THE CONTROL UNIT 213

CPU. The CPU then pushes the program counter and processor status register
(where the flags are stored) onto the stack. The interrupt vector is used to index
into the branch table, which lists the starting addresses of the interrupt service
routines.

When a trap handler or an interrupt service routine begins execution, it saves the
registers that it plans to modify on the stack, performs its task, restores the regis-
ters, and then returns from the interrupt. The process of returning from a trap is
different from returning from a subroutine, since the process of entering a trap is
different from a subroutine call (because the %psr register is also saved and
restored). For the ARC, the rti instruction (see Chapter 8) is used for returning
from a trap or interrupt. Interrupts can interrupt other interrupts, and so the first
thing that an interrupt service routine might do is to raise its priority (using a
special supervisor mode instruction) so that no interrupts of lower priority are
accepted.

6.2.6 NANOPROGRAMMING

If the microstore is wide, and has lots of the same words, then we can save
microstore memory by placing one copy of each unique microword in a nanos-
tore, and then use the microstore to index into the nanostore. For instance, in
the microprogram shown in Figure 6-15, lines 1281 and 1282 are the same.
Lines 3, 4, and 40-44 are the same, and there are a number of other microin-
structions that recur, especially for the duplicated branch microcode and the
duplicated illegal instruction microcode.

Figure 6-19a illustrates the space requirement for the original microstore ROM.
There are n=2048 words that are each 41 bits wide, giving an area complexity of
2048 × 41 = 83,968 bits. Suppose now that there are 100 unique microwords in
the ROM (the microprogram in Figure 6-15 is only partially complete so we can-
not measure the number of unique microwords directly). Figure 6-19b illustrates
a configuration that uses a nanostore, in which an area savings can be realized if
there are a number of bit patterns that recur in the original microcode sequence.
The unique microwords (100 for this case) form a nanoprogram, which is stored
in a ROM that is 100 words deep by 41 bits wide.

The microprogram now indexes into the nanostore. The microprogram has the
same number of microwords regardless of whether or not a nanostore is used, but
when a nanostore is used, pointers into the nanostore are stored in the microstore
rather than the wider 41-bit words. For this case, the microstore is now 2048

214 CHAPTER 6 THE CONTROL UNIT

words deep by  log2(100) = 7 bits wide. The area complexity using a nanostore
is then 100 × 41 + 2048 × 7 = 18,436 bits, which is a considerable savings in area
over the original microcoded approach.

For small m and large n, where m is the length of the nanoprogram, we can real-
ize a large savings in memory. This frees up area that can be applied in some
other way, possibly to improve performance. However, instead of accessing only
the microstore, we must now access the microstore first, followed by an access to
the nanostore. The machine will thus run more slowly, but will fit into a smaller
area.

6.3 Hardwired Control
An alternative approach to a microprogrammed control unit is to use a hard-
wired approach, in which a direct implementation is created using flip-flops and
logic gates, instead of using a control store and a microword selection mecha-
nism. States in a finite state machine replace steps in the microprogram.

In order to manage the complexity of design for a hardwired approach, a hard-
ware description language (HDL) is frequently used to represent the control

Original
Microprogram

w = 41 bits

n
=

 2
04

8
w

or
ds

k = log2(n)
= log2(100)

= 7 bits

n
=

 2
04

8
w

or
ds

w = 41 bits

(a) (b)

m
 =

 100 nanow
ords

Micro-
program

Total Area = n × w =
2048 × 41 = 83,968 bits

Microprogram Area = n × k = 2048 × 7
 = 14,336 bits
Nanoprogram Area = m × w = 100 × 41
 = 4100 bits
Total Area = 14,336 + 4100 = 18,436 bits

Figure 6-19 (a) Microprogramming vs. (b) nanoprogramming.

CHAPTER 6 THE CONTROL UNIT 215

structure. One example of an HDL is VHDL, which is an acronym for VHSIC
Hardware Description Language (in which VHSIC is yet another acronym for
Very High Speed Integrated Circuit). VHDL is used for describing an architec-
ture at a very high level, and can be compiled into hardware designs through a
process known as silicon compilation. For the hardwired control unit we will
design here, a lower level HDL that is sometimes referred to as a register trans-
fer language (RTL) is more appropriate.

We will define a simple HDL/RTL in this section that loosely resembles Hill &
Peterson’s A Hardware Programming Language (AHPL) (Hill and Peterson,
1987). The general idea is to express a control sequence as a series of numbered
statements, which can then be directly translated into a hardware design. Each
statement consists of a data portion and a transfer portion, as shown below:

5: A ← ADD(B,C); ! Data portion
GOTO {10 CONDITIONED ON IR[12]}. ! Control portion

The statement is labelled “5,” which means that it is preceded by statement 4
and is succeeded by statement 6, unless an out-of-sequence transfer of control
takes place. The left arrow (←) indicates a data transfer, to register A for this
case. The “ADD(B,C)” construct indicates that registers B and C are sent to a
combinational logic unit (CLU) that performs the addition. Comments begin
with an exclamation mark (!) and terminate at the end of the line. The GOTO
construct indicates a transfer of control. For this case, control is transferred to
statement 10 if bit 12 of register IR is true, otherwise control is transferred to the
next higher numbered statement (6 for this case).

Figure 6-20 shows an HDL description of a modulo 4 counter. The counter pro-
duces the output sequence: 00, 01, 10, 11 and then repeats as long as the input
line x is 0. If the input line is set to 1, then the counter returns to state 0 at the
end of the next clock cycle. The comma is the catenation operator, and so the
statement “Z ← 0,0;” assigns the two-bit pattern 00 to the two-bit output Z.

The HDL sequence is composed of three sections: the preamble, the numbered
statements, and the epilogue. The preamble names the module with the “MODULE”
keyword and declares the inputs with the “INPUTS” keyword, the outputs with
the “OUTPUTS” keyword, and the arity (number of signals) of both, as well as
any additional storage with the “MEMORY” keyword (none for this example). The
numbered statements follow the preamble. The epilogue closes the sequence
with the key phrase “END SEQUENCE.” The key phrase “END

216 CHAPTER 6 THE CONTROL UNIT

MOD_4_COUNTER” closes the description of the module. Anything that appears
between “END SEQUENCE” and “END MOD_4_COUNTER” occurs continuously,
independent of the statement number. There are no such statements for this case.

In translating an HDL description into a design, the process can be decomposed
into separate parts for the control section and the data section. The control sec-
tion deals with how transitions are made from one statement to another. The
data section deals with producing outputs and changing the values of any mem-
ory elements.

We consider the control section first. There are four numbered statements, and
so we will use four flip-flops, one for each statement, as illustrated in Figure
6-21. This is referred to as a one-hot encoding approach, because exactly one
flip-flop holds a true value at any time. Although four states can be encoded
using only two flip-flops, studies have shown that the one-hot encoding
approach results in approximately the same circuit area when compared with a
more densely encoded approach; but more importantly, the complexity of the
transfers from one state to the next are generally simpler and can be implemented
with shallow combinational logic circuits, which means that the clock rate can be
faster for a one-hot encoding approach than for a densely encoded approach.

In designing the control section, we first draw the flip-flops, apply labels as

MODULE: MOD_4_COUNTER.
INPUTS: x.
OUTPUTS: Z[2].
MEMORY:

0: Z ← 0,0;
 GOTO {0 CONDITIONED ON x,
 1 CONDITIONED ON x}.
1: Z ← 0,1;
 GOTO {0 CONDITIONED ON x,
 2 CONDITIONED ON x}.
2: Z ← 1,0;
 GOTO {0 CONDITIONED ON x,
 3 CONDITIONED ON x}.
3: Z ← 1,1;
 GOTO 0.

END SEQUENCE.
END MOD_4_COUNTER.

Preamble

Statements

Epilogue

Figure 6-20 HDL sequence for a resettable modulo 4 counter.

CHAPTER 6 THE CONTROL UNIT 217

appropriate, and connect the clock inputs. The next step is to simply scan the
numbered statements in order and add logic as appropriate for the transitions.
From statement 0, there are two possible transitions to statements 0 or 1, condi-
tioned on x or its complement, respectively. The output of flip-flop 0 is thus con-
nected to the inputs of flip-flops 0 and 1, through AND gates that take the value
of the x input into account. Note that the AND gate into flip-flop 1 has a circle
at one of its inputs, which is a simplified notation that means x is complemented
by an inverter before entering the AND gate.

A similar arrangement of logic gates is applied for statements 1 and 2, and no
logic is needed at the output of flip-flop 3 because statement 3 returns to state-
ment 1 unconditionally. The control section is now complete and can execute
correctly on its own. No outputs are produced, however, until the data section is
implemented.

We now consider the design of the data section, which is trivial for this case.
Both bits of the output Z change in every statement, and so there is no need to
condition the generation of an output on the state. We only need to produce the
correct output values for each of the statements. The least significant bit of Z is
true in statements 1 and 3, and so the outputs of the corresponding control
flip-flops are ORed to produce Z[0]. the most significant bit of Z is true in state-
ments 2 and 3, and so the outputs of the corresponding control flip-flops are
ORed to produce Z[1]. The entire circuit for the mod 4 counter is now com-
plete, as shown in Figure 6-21.

CLK

QD
0

x

QD QD QD
1 2 3

Z[1]

Z[0]

CONTROL SECTION

DATA SECTION

Figure 6-21 Logic design for a modulo 4 counter described in HDL.

218 CHAPTER 6 THE CONTROL UNIT

We can now use our HDL in describing the control section of the ARC microar-
chitecture. There is no need to design the data section, since we have already
defined its form in Figure 6-10. The data section is the same for both the micro-
coded and hardwired approaches. As for the microcoded approach, the opera-
tions that take place for a hardwired approach are:

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.

3) Read operand(s) from main memory, if any.

4) Execute the instruction and store results.

5) Go to Step 1.

The microcode of Figure 6-15 can serve as a guide for what needs to be done.
The first step is to fetch the next user-level instruction from main memory. The
following HDL line describes this operation:

0: ir ← AND(pc, pc); Read = 1.

The structure of this statement is very similar to the first line of the micropro-
gram, which may not be surprising since the same operations must be carried out
on the same datapath.

Now that the instruction has been fetched, the next operation is to decode the
opcode. This is where the power of a hardwired approach comes into play. Since
every instruction has an op field, we can decode that field first, and then decode
the op2, op3, and cond fields as appropriate for the instruction.

The next line of the control sequence decodes the op field:

The product symbol “×” indicates a logical AND operation. Control is thus

GOTO {2 CONDITIONED ON IR[31]×IR[30], ! Branch/Sethi format: op=00
 4 CONDITIONED ON IR[31]×IR[30], ! Call format: op=01
 8 CONDITIONED ON IR[31]×IR[30], ! Arithmetic format: op=10
 10 CONDITIONED ON IR[31]×IR[30]}. ! Memory format: op=11

1:

CHAPTER 6 THE CONTROL UNIT 219

transferred to one of the four numbered statements: 2, 4, 8, or 10 depending on
the bit pattern in the op field.

Figure 6-24 shows a complete HDL description of the control section. We may

have to do additional decoding depending on the value of the op field. At line 4,
which is for the Call format, no additional decoding is necessary. The call
instruction is then implemented in statements 4-7, which are similar to the
microcoded version.

MODULE: ARC_CONTROL_UNIT.

INPUTS:

OUTPUTS: C, N, V, Z. ! These are set by the ALU

MEMORY: R[16][32], pc[32], ir[32], temp0[32], temp1[32], temp2[32],

 temp3[32].

0: ir ← AND(pc, pc); Read ← 1; ! Instruction fetch

 ! Decode op field

1: GOTO {2 CONDITIONED ON ir[31]×ir[30], ! Branch/sethi format: op=00
 4 CONDITIONED ON ir[31]×ir[30], ! Call format: op=01
 8 CONDITIONED ON ir[31]×ir[30], ! Arithmetic format: op=10
 10 CONDITIONED ON ir[31]×ir[30]}. ! Memory format: op=11
 ! Decode op2 field

2: GOTO 19 CONDITIONED ON ir[24]. ! Goto 19 if Branch format

3: R[rd] ← ir[imm22]; ! sethi

 GOTO 20.

4: R[15] ← AND(pc, pc). ! call: save pc in register 15

5: temp0 ← ADD(ir, ir). ! Shift disp30 field left

6: temp0 ← ADD(ir, ir). ! Shift again

7: pc ← ADD(pc, temp0); GOTO 0. ! Jump to subroutine

 ! Get second source operand into temp0 for Arithmetic format

8: temp0 ← { SEXT13(ir) CONDITIONED ON ir[13]×NOR(ir[19:22]), ! addcc
 R[rs2] CONDITIONED ON ir[13]×NOR(ir[19:22]), ! addcc
 SIMM13(ir) CONDITIONED ON ir[13]×OR(ir[19:22]), ! Remaining
 R[rs2] CONDITIONED ON ir[13]×OR(ir[19:22])}. ! Arithmetic instructions
 ! Decode op3 field for Arithmetic format

9: R[rd] ← {
 ADDCC(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 010000), ! addcc

 ANDCC(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 010001), ! andcc

 ORCC(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 010010), ! orcc

 NORCC(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 010110), ! orncc

 SRL(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 100110), ! srl

 ADD(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 111000)}; ! jmpl

 GOTO 20.

 ! Get second source operand into temp0 for Memory format

10: temp0 ← {SEXT13(ir) CONDITIONED ON ir[13],

 R[rs2] CONDITIONED ON ir[13]}.

11: temp0 ← ADD(R[rs1], temp0).

 ! Decode op3 field for Memory format

 GOTO {12 CONDITIONED ON ir[21], ! ld

 13 CONDITIONED ON ir[21]}. ! st

12: R[rd] ← AND(temp0, temp0); Read ← 1; GOTO 20.

13: ir ← RSHIFT5(ir).

Figure 6-22 HDL description of the ARC control unit.

220 CHAPTER 6 THE CONTROL UNIT

In statement 2, additional decoding is performed on the op2 field which is
checked to determine if the instruction is sethi or a branch. Since there are
only two possibilities, only one bit of op2 needs to be checked in line 2. Line 3
then implements sethi and line 19 implements the branch instructions.

Line 8 begins the Arithmetic format section of the code. Line 8 gets the second
source operand, which can be either immediate or direct, and can be sign
extended to 32 bits (for addcc) or not sign extended. Line 9 implements the
Arithmetic format instructions, conditioned on the op3 field. The XNOR func-
tion returns true if its arguments are equal, otherwise it returns false, which is
useful in making comparisons.

Line 10 begins the Memory format section of the code. Line 10 gets the second
source operand, which can either be a register or an immediate operand. Line 11
decodes the op3 field. Since the only Memory format instructions are ld and
st, only a single bit (IR[21]) needs to be observed in the op3 field. Line 12
then implements the ld instruction, and lines 13-18 implement the st instruc-
tion. Finally, line 20 increments the program counter and transfers control back
to the first statement.

Now that the control sequence is defined, the next step is to design the logic for
the control section. Since there are 21 statements, there are 21 flip-flops in the
control section as shown in Figure 6-23. A control signal (CSi) is produced for
each of the 21 states, which is used in the data section of the hardwired control-
ler.

14: ir ← RSHIFT5(ir).

15: ir ← RSHIFT5(ir).

16: ir ← RSHIFT5(ir).

17: ir ← RSHIFT5(ir).

18: r0 ← AND(temp0, R[rs2]); Write ← 1; GOTO 20.

19: pc ← { ! Branch instructions

 ADD(pc, temp0) CONDITIONED ON ir[28] + ir[28]×ir[27]×Z +
 ir[28]×ir[27]×ir[26]×C + ir[28]×ir[27]×ir[26]×ir[25]×N +
 ir[28]×ir[27]×ir[26]×ir[25]×V,
 INCPC(pc) CONDITIONED ON ir[28]×ir[27]×Z +
 ir[28]×ir[27]×ir[26]×C + ir[28]×ir[27]×ir[26]×ir[25]×N +
 ir[28]×ir[27]×ir[26]×ir[25]×V};
 GOTO 0.

20: pc ← INCPC(pc); GOTO 0.

END SEQUENCE.

END ARC_CONTROL_UNIT.

Figure 6-22 (Continued.)

CHAPTER 6 THE CONTROL UNIT 221

In Figure 6-24, the data section of the hardwired controller generates the signals
that control the datapath. There are 27 OR gates that correspond to the 27 sig-
nals that control the datapath. (Refer to Figure 6-10. Count the 27 signals that
originate in the control section that terminate in the datapath.) The AMUX sig-
nal is set to 1 only in lines 9 and 11, which correspond to operations that place

CLK

QD
0

QD
1

QD
2

QD
3

QD
4

QD
5

QD
6

QD
7

QD
8

QD
9

QD
10

QD
11

QD
12

QD
13

QD
14

QD
15

QD
16

QD
17

QD
18

QD
19

IR[31]

IR[30] IR[24]

IR[21]

QD
20

CS0 CS3

CS4

CS5

CS6

CS0

CS8

CS9

CS10
CS11

CS12

CS13 CS14

CS15

CS16 CS17
CS18

CS19

CS20

Figure 6-23 The hardwired control section of the ARC: generation of the control signals.

222 CHAPTER 6 THE CONTROL UNIT

rs1 onto the A bus. Signals CS9 and CS11 are thus logically OR’d to produce
AMUX. Likewise, rd is placed on the C bus in lines 3, 9, and 12, and so CS3,
CS9, and CS12 are logically OR’d to produce CMUX.

The BMUX signal is more complex. rs2 is placed on the B bus in lines 8, 10,
and 18, and so CS8, CS10, and CS18 are used to generate BMUX as shown.
However, in line 8, BMUX is set (indicating rs2 is placed on the B bus) only if
IR[13] = 0 and IR[19:22] are all 0 (for the rightmost 4 bits of the 6-bit
op3 pattern for addcc: 010000.) The corresponding logic is shown for this case.
Likewise, in line 10, BMUX is set to 1 only when IR[13] = 0. Again, the cor-
responding logic is shown.

The Read signal is set in lines 10 and 12, and so CS0 and CS12 are logically OR’d
to produce Read. The Write signal is generated only in line 18, and thus needs
no logic other than the signal CS18.

AMUX
CS9

CS11

WriteCS18

CMUX
CS3

CS9
CS12

Read
CS0

CS12

BMUX

CS18
IR[13]

CS10

CS8

IR
[1

9] IR
[2

2]
IR

[2
0]

IR
[2

1]

ALU[3]

CS9

IR[19]
IR[20]

IR[24]

IR[23]

IR[22]
IR[21]

CS20
CS19

CS8

CS5
CS6CS7

CS16
CS14

CS15

CS17

CS11

CS13

ALU[2]

CS20
CS18

CS4

CS10

CS12

CS16

CS14

CS15

CS1

CS13
CS17

CS2

CS3

CS8

IR[13]

IR[19]
IR[20]

IR[22]
IR[21]

CS9

IR
[2

4]
IR

[2
3]

IR[19]
IR[20]IR

[2
2]

IR[21]

CS19
IR[28]

IR[28]
IR[27]

IR[26]
IR[25]

C

IR[28]
IR[27]

IR[26]
IR[25] N

IR[28]
IR[27]

IR[26]
C

IR[28]

IR[27]
Z

CS2CS3IR[24]

ALU[0]

ALU[1]

CS20CS16

CS14
CS15

CS13

CS17

IR[20]
IR[21]

CS19

CS8

IR[13]
IR[19]

IR[22]

IR[20]

IR[21]

CS9

IR
[1

9]
IR

[2
2]

IR[24]IR[23]

CS4 CS1

CS0

IR[13]
CS8

IR[22]
IR[21]

IR[19]

IR[23]

B[5]

B[2]

B[3]

B[4]

B[0]

B[1]

C[3]

C[4]

C[5]

IR[13]

IR[13]

A[1]

A[3]

A[4]

0

0

0

A[0]

CS5
CS6

CS16
CS14

CS15

CS17

CS13

CS12CS8

CS10

CS18

A[2]

A[5]
CS4

CS0

CS20
CS19

CS7

C[0]

C[1]

C[2]

Figure 6-24 The hardwired control section of the ARC: signals from the data section of the control

unit to the datapath. (Shaded areas are not detailed.)

CHAPTER 6 THE CONTROL UNIT 223

There are 4 signals that control the ALU: ALU[0], ALU[1], ALU[2], and
ALU[3], which correspond to F0, F1, F2, and F3, respectively, in the ALU opera-
tion table shown in Figure 9-4. These four signals need values in each of the 20
HDL lines. In line 0, the ALU operation is AND, which corresponds to
ALU[3:0] = 0101. Line 1 has no ALU operation specified, and so we can arbi-
trarily choose an ALU operation that has no side effects, like AND (0101). Con-
tinuing in this way, taking CONDITIONED ON statements into account, produces
the logic for ALU[3:0] as shown in the figure.

The control signals are sent to the datapath, similar to the way that the MIR con-
trols the datapath in the microprogrammed approach of Figure 6-10. The hard-
wired and microcontrolled approaches can thus be considered interchangeable,
except with varying costs. There are only 21 flip-flops in the hardwired approach,
but there are 2048×41 = 83,968 flip-flops in the microprogrammed approach
(although in actuality, a ROM would be used, which consumes less space because
smaller storage elements than flip/flops can be used.) The amount of additional
combinational logic is comparable. The hardwired approach is faster in executing
ARC instructions, especially in decoding the Branch format instructions, but is
more difficult to change once it is committed to fabrication.

EXAMPLE

Consider adding the same subcc instruction from the previous EXAMPLE to the
hardwired implementation of the ARC instruction set. As before, the subcc
instruction uses the Arithmetic format and an op3 field of 001100.

Only line 9 of the HDL code needs to be changed, by inserting the expression:

ADDCC (R[rs1], INC_1(temp0)) CONDITIONED ON XNOR(IR[19:24], 001100), ! subcc

before the line for addcc.

The corresponding signals that need to be modified are ALU[3:0]. The INC_1
construct in the line above indicates that an adder CLU, which would be defined
in another HDL module, should be created (in a hardwired control unit, there is
a lot of flexibility on what can be done.) ■

6.4 Case Study: A User-Microprogrammable Computer: The PDP11/60
Although it was introduced over 20 years ago, in 1977, as an extension to DEC’s

224 CHAPTER 6 THE CONTROL UNIT

minicomputer family, the PDP 11/60 control unit contains several features that
still make it interesting as a case study. The PDP11/60 was a state-of-the art
minicomputer when introduced, having an 18-bit address space and a 16-bit
word size. It is a two-address machine (one of the two source operands is the
same as the destination operand) and has 8 16-bit registers, numbered R0
through R7, with R6 serving as a hardware stack pointer (SP) and R7 serving as
the PC. It also has an 8-bit Processor Status Register (PSW). The PSW contains
N, Z, V, and C bits, as well as a 3-bit interrupt priority field. The PDP 11/60 has
an integral floating point processor that executes floating point instructions in
parallel with integer instructions. It was one of the first minicomputers to
include cache memory, and it has a direct memory access (DMA) unit for
high-speed I/O (see Chapter 8 for details on DMA.)†

6.4.1 MICROPROGRAMMED vs. HARDWIRED CONTROL UNITS

One of the more interesting features of this machine is its approach to control
unit design. At the time of its introduction in June 1977, most minicomputers
were microprogrammed, with the microprogram being stored in a separate
ROM. The reason for this was primarily one of convenience, as microprograms
could be more easily written, debugged, and maintained, because of the soft-
ware-like nature of microprogramming. Microprogrammed machines had a dis-
advantage, however: each microstep requires a memory fetch. This means that
the microprogrammed approach suffers a performance disadvantage relative to
hardwired control units as long as memory access times are longer than propaga-
tion time through a few levels of combinational logic.

Hardwired control logic, on the other hand, while having a speed advantage, is
difficult to design without effective computer-aided design (CAD) tools, which
were largely lacking at the time. It also results in a design that is harder to modify
and upgrade, as compared with a ROM-based microprogram, which can be
upgraded by plugging in a new ROM.

6.4.2 STATISTICS IN COMPUTER DESIGN

The designers of the 11/60 decided to use the hardwired approach for instruc-
tions (or parts of instructions) that were frequently used, and microprogramming
for the rest of the instruction set. By analyzing the frequency of use of instruc-

†. Much of the material in this case study was taken from (Mudge, 1978).

CHAPTER 6 THE CONTROL UNIT 225

tions, the designers were able to determine where hardwiring would be most
advantageous, and implemented those instructions with a hardwired approach.
The machine approached the speed made possible with a hardwired control unit,
while retaining advantages of microprogramming. Over one million floating
point instructions from actual user programs were analyzed to guide the
trade-off, which was a large sample at the time.

6.4.3 THE PDP 11/60 CONTROL UNIT

.The control unit of the PDP 11 family is fairly simple. Figure 6-25 shows the

design of a PDP 11 microcode control unit. Microaddresses are 12 bits wide,
allowing the addressing of 4096 microcontrol words. Notice that each microin-
struction contains, in addition to the data path control signals, two additional

mBranch Logic Control Signals

Writable Control Store

mAddress Register

¥˚¥˚¥

Addr.
of next

mInstructi

4

mBranch Logic

12

State Information
from Data Path

To Data Path Controls

Bits to
OR into

next mword

 mControl Word

12 12

8

Figure 6-25 The PDP 11 control unit.

226 CHAPTER 6 THE CONTROL UNIT

fields that select the address of the next microinstruction. The 12-bit next
address field effectively makes each microinstruction a branch instruction. This
feature is feasible in microcontrol units, where addresses are small, and it allows
great flexibility in microcode design. The other field, microbranch logic, is a
4-bit field whose bits are combined with bits in the data path such as the flags, in
the block marked, “microBranch Logic.” The resulting 10-bit word is ORed with
the next address bits. This “bit ORing” allows additional branch capabilities,
such as the ability to branch to a certain microaddress based upon the value of a
flag in the processor status register.

6.4.4 WRITABLE CONTROL STORE AND USER MICROPROGRAMMING

One of the innovations of the 11/60 was its use of a Writable Control Store
(WCS) to store microinstructions, rather than the usual ROM storage. The
WCS had a 4096-word address space for the microprogram that was loaded from
disk. This meant that the microcode could be easily updated with bug fixes (yes,
there can be bugs in microcode) or instruction set enhancements and upgrades.

Furthermore, the top 1024 words were reserved for user microprograms. DEC
made several provisions to support user microprogramming, including the incor-
poration of an opcode specifically reserved for user microinstructions. The
designers also included development tools and documentation aimed at assisting
the end user with microprogram development. They even provided a means for
users to write microprogrammed interrupt service routines.

While this was an interesting and innovative approach, it was abandoned in later
family members, perhaps because of the increased difficulty in assuring upward
compatibility of user programs containing user-developed instructions.

■ SUMMARY

A microarchitecture consists of a datapath and a control section. The datapath
contains data registers, an ALU, and the connections among them. The control
section contains registers for microinstructions (for a microprogramming
approach) and for condition codes, and a controller. The controller can be micro-
programmed or hardwired. A microprogrammed controller interprets microin-
structions by executing a microprogram that is stored in a control store. A
hardwired controller is organized as a collection of flip-flops that maintain state

CHAPTER 6 THE CONTROL UNIT 227

information, and combinational logic that implements transitions among the
states.

The hardwired approach is fast, and consumes a small amount of hardware in
comparison with the microprogrammed approach. The microprogrammed
approach is flexible, and simplifies the process of modifying the instruction set. The
control store consumes a significant amount of hardware, which can be reduced to
a degree through the use of nanoprogramming. Nanoprogramming adds delay to
the microinstruction execution time. The choice of microprogrammed or hard-
wired control thus involves trade-offs: the microprogrammed approach is large
and slow, but is flexible and lends itself to simple implementations, whereas the
hardwired approach is small and fast, but is difficult to modify, and typically
results in more complicated implementations.

■ FURTHER READING
(Wilkes, 1958) is a classic reference on microprogramming. (Mudge, 1978) cov-
ers microprogramming on the DEC PDP 11/60. (Tanenbaum, 1990) and
(Mano, 1991) provide instructional examples of microprogrammed architec-
tures. (Hill and Peterson, 1987) gives a tutorial treatment of the AHPL hardware
description language, and hardwired control in general. (Lipsett et al., 1989) and
(Navabi, 1993) describe the commercial VHDL hardware description language
and provide examples of its use. (Gajski, 1988) covers various aspects of silicon
compilation.

Gajski, D., Silicon Compilation, Addison Wesley, (1988).

Hill, F. J. and G. R. Peterson, Digital Systems: Hardware Organization and
Design, 3/e, John Wiley & Sons, (1987).

Lipsett, R., C. Schaefer, and C. Ussery, VHDL: Hardware Description and Design,
Kluwer Academic Publishers, (1989).

Mano, M., Digital Design, 2/e, Prentice Hall, (1991).

Mudge, J. Craig, Design Decisions for the PDP11/60 Mid-Range Minicomputer, in
Computer Engineering, A DEC View of Hardware Systems Design, Digital Press,

228 CHAPTER 6 THE CONTROL UNIT

Bedford MA, (1978).

Navabi, Z., VHDL: Analysis and Modeling of Digital Systems, McGraw Hill,
(1993).

Tanenbaum, A., Structured Computer Organization, 3/e, Prentice Hall, Engle-
wood Cliffs, New Jersey, (1990).

Wilkes, M. V., W. Redwick, and D. Wheeler, “The Design of a Control Unit of
an Electronic Digital Computer,” Proc. IRE, vol. 105, p. 21, (1958).

■ PROBLEMS
6.1 Design a 1-bit arithmetic logic unit (ALU) using the circuit shown in Fig-

ure 6-26 that performs bitwise addition, AND, OR, and NOT on the 1-bit

inputs A and B. A 1-bit output Z is produced for each operation, and a carry
is also produced for the case of addition. The carry is zero for AND, OR, and
NOT. Design the 1-bit ALU using the components shown in the diagram.
Just draw the connections among the components. Do not add any logic
gates, MUXes, or anything else. Note: The Full Adder takes two one-bit
inputs (X and Y) and a Carry In, and produces a Sum and a Carry Out.

6.2 Design an ALU that takes two 8-bit operands X and Y and produces an

Z

Carry
Out

Output

Full
Adder

X Y

Carry In

Carry Out Sum

A

B

Carry
In

Data
Inputs

F0

F1

00

01

10

11

2-to-4 Decoder

Function
Select

0
0
1
1

0
1
0
1

Fo F1

ADD(A,B)
AND(A,B)
OR(A,B)
NOT(A)

Function

Figure 6-26 A one-bit ALU.

CHAPTER 6 THE CONTROL UNIT 229

8-bit output Z. There is also a two-bit control input C in which 00 selects log-
ical AND, 01 selects OR, 10 selects NOR, and 11 selects XOR. In designing
your ALU, follow this procedure: (1) draw a block diagram of eight 1-bit
ALUs that each accept a single bit from X and Y and both control bits, and
produce the corresponding single-bit output for Z; (2) create a truth table that
describes a 1-bit ALU; (3) design one of the 1-bit ALUs using an 8-to-1
MUX.

6.3 Design a control unit for a simple hand-held video game in which a char-
acter on the display catches objects. Treat this as an FSM problem, in which
you only show the state transition diagram. Do not show a circuit. The input
to the control unit is a two-bit vector in which 00 means “Move Left,” 01
means “Move Right,” 10 means “Do Not Move,” and 11 means “Halt.” The
output Z is 11 if the machine is halted, and is 00, 01, or 10 otherwise, corre-
sponding to the input patterns. Once the machine is halted, it must remain in
the halted state indefinitely.

6.4 In Figure 6-3, there is no line from the output of the C Decoder to %r0.
Why is this the case?

6.5 Refer to diagram Figure 6-27. Registers 0, 1, and 2 are general purpose
registers. Register 3 is initialized to the value +1, which can be changed by the
microcode, but you must make certain that it does not get changed.

a) Write a control sequence that forms the two’s complement difference of the
contents of registers 0 and 1, leaving the result in register 0. Symbolically, this
might be written as: r0 ← r0 – r1. Do not change any registers except r0 and
r1 (if needed). Fill in the table shown below with 0’s or 1’s (use 0’s when the
choice of 0 or 1 does not matter) as appropriate. Assume that when no regis-
ters are selected for the A-bus or the B-bus, that the bus takes on a value of 0.

b) Write a control sequence that forms the exclusive-OR of the contents of

F0 F10 1 2 30 1 2 30 1 2 3
Write Enables A-bus enables B-bus enables

Time

0

1

2

230 CHAPTER 6 THE CONTROL UNIT

registers 0 and 1, leaving the result in register 0. Symbolically, this might be
written as: r0 ← XOR(r0, r1). Use the same style of solution as for part (a).

6.6 Write the binary form for the microinstructions shown below. Use the
style shown in Figure 6-17. Use the value 0 for any fields that are not needed.

60: R[temp0] ← NOR(R[0],R[temp0]); IF Z THEN GOTO 64;
61: R[rd] ← INC(R[rs1]);

6.7 Three binary words are shown below, each of which can be interpreted as
a microinstruction. Write the mnemonic version of the binary words using the
micro-assembly language introduced in this chapter.

F0
F1

Scratchpad

(Four 16-bit
registers)

A-bus B-bus

C-bus

0 1 2 3 0 1 2 3

0
1
2
3

Output Enables
A-bus B-bus

Write
Enables

ALU

F0 F1

0

0

1

1

0

1

0

1

ADD(A, B)

AND(A, B)
A_
A

Function

Figure 6-27 A small microarchitecture.

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

010100 000001 0001000110000000000000000
000011 000101 0001000100011011100000001

1
0
0 000010 000011 0001000100010111100010010

0 0 0
0 0 0
0 0 0

CHAPTER 6 THE CONTROL UNIT 231

6.8 Rewrite the microcode for the call instruction starting at line 1280 so
that only 3 lines of microcode are used instead of 4. Use the LSHIFT2 opera-
tion once instead of using ADD twice.

6.9 (a) How many microinstructions are executed in interpreting the subcc
instruction that was introduced in the first Example section? Write the num-
bers of the microinstructions in the order they are executed, starting with
microinstruction 0.

(b) Using the hardwired approach for the ARC microcontroller, how many
states are visited in interpreting the addcc instruction? Write the states in the
order they are executed, starting with state 0.

6.10 (a) List the microinstructions that are executed in interpreting the ba
instruction.

(b) List the states (Figure 6-22) that are visited in interpreting the ba instruc-
tion.

6.11 Register %r0 can be designed using only tri-state buffers. Show this
design.

6.12 What bit pattern should be placed in the C field of a microword if none of
the registers are to be changed?

6.13 A control unit for a machine tool is shown in Figure 6-28. You are to cre-
ate the microcode for this machine. The behavior of the machine is as follows:
If the Halt input A is ever set to 1, then the output of the machine stays halted
forever and outputs a perpetual 1 on the X line, and 0 on the V and W lines. A
waiting light (output V) is enabled (set to 1) when no inputs are enabled. That
is, V is lit when the A, B, and C inputs are 0, and the machine is not halted. A
bell is sounded (W=1) on every input event (B=1 and/or C=1) except when
the machine is halted. Input D and output S can be used for state information
for your microcode. Use 0’s for any fields that do not matter. Hint: Fill in the
lower half of the table first.

6.14 For this problem, you are to extend the ARC instruction set to include a
new instruction by modifying the microprogram. The new ARC instruction

232 CHAPTER 6 THE CONTROL UNIT

to be microcoded is:

xorcc — Perform an exclusive OR on the operands, and set the condition
codes accordingly. This is an Arithmetic format instruction. The op3 field is
010011.

Show the new microinstructions that will be added for xorcc.

6.15 Show a design for a four-word register stack, using 32-bit registers of the

Microstore ROM

A

Clock

ROM ContentsAddress

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

A B C D

B C D

V W

V W X

SX

Register

S

Halt

Halt Bell Halted

Figure 6-28 Control unit for a machine tool.

CHAPTER 6 THE CONTROL UNIT 233

form shown below:

Four registers are stacked so that the output of the top register is the input to
the second register, which outputs to the input of the third, which outputs to
the input of the fourth. The input to the stack goes into the top register, and
the output of the stack is taken from the output of the top register (not the
bottom register). There are two additional control lines, push and pop,
which cause data to be pushed onto the stack or popped off the stack, respec-
tively, when the corresponding line is 1. If neither line is 1, or if both lines are
1, then the stack is unchanged.

6.16 In line 1792 of the ARC microprogram, the conditional GOTO appears at
the end of the line, but in line 8 it appears at the beginning. Does the position
of the GOTO within a micro-assembly line matter?

6.17 A microarchitecture is shown in Figure 6-29. The datapath has four regis-
ters and an ALU. The control section is a finite state machine, in which there
is a RAM and a register. For this microarchitecture, a compiler translates a
high level program directly into microcode; there is no intermediate assembly
language form, and so there are no instruction fetch or decode cycles.

For this problem, you are to write the microcode that implements the instruc-
tions listed below. The microcode should be stored in locations 0, 1, 2, and 3
of the RAM. Although there are no lines that show it, assume that the n and z
bits are both 0 when C0C1 = 00. That is, A23 and A22 are both 0 when there is
no possible jump. Note: Each bit of the A, B, and C fields corresponds
directly to a register. Thus, the pattern 1000 selects register R3, not register 8,
which does not exist. There are some complexities with respect to how
branches are made in this microarchitecture, but you do not need to be con-
cerned with how this is done in order to generate the microcode.

Read

Data In

32

Data Out

32

Write
Clock

32-Bit Register

234 CHAPTER 6 THE CONTROL UNIT

0: R1 ← ADD(R2, R3)
1: Jump if negative to (15)10
2: R3 ← AND(R1, R2)

F 1
F 0

0 0 1 1

0 1 0 1

Fu
nc

tio
n

A
D

D
(A

, B
)

A
N

D
(A

, B
)

O
R

(A
, B

)
N

O
T

(A
)

A
L

U
C

1
C

0

0 0 1 1

0 1 0 1

C
on

di
tio

n

U
se

 N
ex

t A
dd

re
ss

U
se

 J
um

p
A

dd
re

ss
U

se
 J

um
p

A
dd

re
ss

 o
n

Z
er

o

 R
es

ul
t

U
se

 J
um

p
A

dd
re

ss
 o

n
N

eg
at

iv
e

 R

es
ul

tC
on

d

A
L

U
A

-B
us

B
-B

us
C

-B
us

C
on

d
Ju

m
p

A
dd

re
ss

N
ex

t A
dd

re
ss

F
0

A
L

U

R
0

R
1

R
2

R
3

A
-b

us
B

-b
us

C
-b

us

F
1

In
pu

t

O
ut

pu
t

R
A

M

22
4
 w

or
ds

 ×
 3

6
bi

ts

36

10
10

2

2n
(n

eg
at

iv
e)

 a
nd

 z
 (

ze
ro

)
bi

ts

2

C
0

C
1

A
2

3
, A

2
2

A
2

1
, A

2
0

A
1

9
 –

 A
1

0
A

9
 –

 A
0

A
dd

re
ss

 b
its

A
L

U
A

-B
us

B
-B

us
C

-B
us

C
on

d
Ju

m
p

A
dd

re
ss

N
ex

t A
dd

re
ss

0 1 2 3

R
A

M

A
dd

re
ss

4
4

4

R
2

R
3

R
0

R
1

R
2

R
3

R
0

R
1

R
2

R
3

R
0

R
1

A
 E

na
bl

e
L

in
es

B
 E

na
bl

e
L

in
es

C
 E

na
bl

e
L

in
es

Figure 6-29 An example microarchitecture.

CHAPTER 6 THE CONTROL UNIT 235

3: Jump to (20)10

6.18 In line 2047 of the ARC microprogram shown in Figure 6-15, would the
program behave differently if the “GOTO 0” portion of the instruction is
deleted?

6.19 In horizontal microprogramming, the microwords are wide, whereas in
vertical microprogramming the words are narrow. In general, horizontal
microwords can be executed quickly, but require more space than vertical
microwords, which take more time to execute. If we make the microword for-
mat shown in Figure 6-11 more horizontal by expanding the A, B, and C
fields to contain a single bit for each of the 38 registers instead of a coded
six-bit version, then we can eliminate the A, B, and C decoders shown in Fig-
ure 6-3. This allows the clock frequency to be increased, but also increases the
space for the microstore.

(a) How wide will the new horizontal microword be?

(b) By what percentage will the microstore increase in size?

6.20 Refer to Figure 6-7. Show the ALU LUT0 and ALU LUTx (x > 0) entries
for the INC(A) operation.

6.21 On some architectures, there is special hardware that updates the PC,
which takes into account the fact that the rightmost two bits are always 0.
This is not shown in this chapter for the ARC, and so the branch microcode
in lines 2 - 20 of Figure 6-15 has an error in how the PC is updated on line
12. Identify the error, and show the corrected microcode.

236 CHAPTER 6 THE CONTROL UNIT

