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INPUT, OUTPUT, AND
COMMUNICATION

In the earlier chapters, we considered how the CPU interacts with data that is
accessed internal to the CPU, or is accessed within the main memory, which may
be extended to a hard magnetic disk through virtual memory. While the access
speeds at the different levels of the memory hierarchy vary dramatically, for the
most part, the CPU sees the same response rate from one access to the next. The
situation when accessing input/output (1/0) devices is very different.

» The speeds of I/0O data transfers can range from extremely slow, such as

reading data entered from a keyboard, to so fast that the CPU may not be
able to keep up, as may be the case with data streaming from a fast disk
drive, or real time graphics being written to a video monitor.

I/O activities are asynchronous, that is, not synchronized to the CPU
clock, as are memory data transfers. Additional signals, called handshaking
signals, may need to be incorporated on the 1/O bus to coordinate when
the device is ready to have data read from it or written to it.

» The quality of the data may be suspect. For example, line noise during data

transfers using the public telephone network, or errors caused by media de-
fects on disk drives mean that error detection and correction strategies may
be needed to ensure data integrity.

» Many I/O devices are mechanical, and are in general more prone to failure

than the CPU and main memory. A data transfer may be interrupted due
to mechanical failure, or special conditions such as a printer being out of
paper, for example.

* |/O software modules, referred to as device drivers, must be written in

such a way as to compensate for the properties mentioned above.

In this chapter we will first discuss the nature of the 1/O devices themselves,
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beginning with mass storage devices and then input and output devices. Follow-
ing that we discuss the nature of the communications process with these devices,
and we conclude with a treatment of error detection and correction techniques.

In Chapter 7, we saw that computer memory is organized as a hierarchy, in
which the fastest method of storing information (registers) is expensive and not
very dense, and the slowest methods of storing information (tapes, disks, etc.) are
inexpensive and are very dense. Registers and random access memories require
continuous power to retain their stored data, whereas media such as magnetic
tapes and magnetic disks retain information indefinitely after the power is
removed, which is known as indefinite persistence. This type of storage is said
to be non-volatile. There are many kinds of non-volatile storage, and only a few
of the more common methods are described below. We start with one of the
more prevalent forms: the magnetic disk.

MAGNETIC DISKS

A magnetic disk is a device for storing information that supports a large storage
density and a relatively fast access time. A moving head magnetic disk is com-
posed of a stack of one or more platters that are spaced several millimeters apart
and are connected to a spindle, as shown in Figure 8-1. Each platter has two sur-
faces made of aluminum or glass (which expands less than aluminum as it heats
up), which are coated with extremely small particles of a magnetic material such
as iron oxide, which is the essence of rust. This is why disk platters, floppy dis-
kettes, audio tapes, and other magnetic media are brown. Binary 1's and O’ are
stored by magnetizing small areas of the material.

A single head is dedicated to each surface. Six heads are used in the example
shown in Figure 8-1, for the six surfaces. The top surface of the top platter and
the bottom surface of the bottom platter are sometimes not used on multi-platter
disks because they are more susceptible to contamination than the inner surfaces.
The heads are attached to a common arm (also known as a comb) which moves
in and out to reach different portions of the surfaces.

In a “hard disk drive,” as it is called, the platters rotate at a constant speed of typ-
ically 3600 to 10,000 revolutions per minute (RPM). The heads read or write
data by magnetizing the magnetic material as it passes under the heads when
writing, or by sensing the magnetic fields when reading. Only a single head is
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Figure 8-1 A magnetic disk with three platters.

used for reading or writing at any time, so data is stored in serial fashion even
though the heads can theoretically be used to read or write several bits in parallel.
One reason that the parallel mode of operation is not normally used is that heads
can become misaligned, which corrupts the way that data is read or written. A
single surface is relatively insensitive to the alignment of the corresponding head
because the head position is always accurately known with respect to reference
markings on the disk.

Data encoding

Only the transitions between magnetized areas are sensed when reading a disk,
and so runs of 1’s or 0’s will not be detected unless a method of encoding is used
that embeds timing information into the data to identify the breaks between bits.
Manchester encoding is one method that addresses this problem, and another
method is modified frequency modulation (MFM). For comparison, Figure
8-2a shows an ASCII ‘F’ character encoded in the non-return-to-zero (NRZ)
format, which is the way information is encoded inside of a CPU. Figure 8-2b
shows the same character encoded in the Manchester code. In Manchester
encoding there is a transition between high and low signals on every bit, resulting
in a transition at every bit time. A transition from low to high indicates a 1,
whereas a transition from high to low indicates a 0. These transitions are used to
recover the timing information.
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Figure 8-2 (a) Straight amplitude (NRZ) encoding of ASCII ‘F’; (b) Manchester encoding of ASCII
P

A single surface contains several hundred concentric tracks, which in turn are
composed of sectors of typically 512 bytes in size, stored serially, as shown in
Figure 8-3. The sectors are spaced apart by inter-sector gaps, and the tracks are

Figure 8-3 Organization of a disk platter with a 1:2 interleave factor.

spaced apart by inter-track gaps, which simplify positioning of the head. A set
of corresponding tracks on all of the surfaces forms a cylinder. For instance,
track 0 on each of surfaces 0, 1, 2, 3, 4, and 5 in Figure 8-1 collectively form cyl-
inder 0. The number of bytes per sector is generally invariant across the entire

platter.

In modern disk drives the number tracks per sector may vary in zones, where a
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zone is a group of tracks having the same number of sectors per track. Zones near
the center of the platter where bits are spaced closely together have fewer sectors,
while zones near the outside periphery of the platter, where bits are spaced far-
ther apart, have more sectors per track. This technique for increasing the capacity
of a disk drive is known as zone-bit recording.

Disk drive capacities and speeds

If the disk is assumed to have only a single zone, its storage capacity, C, can be
computed from the number of bytes per sector, N, the number of sectors per
track, S, the number of tracks per surface, T, and the number of platter surfaces
that have data encoded in them, P, with the formula:

C=NxSxTxP

A high-capacity disk drive may have N = 512 bytes, S = 1,000 sectors per track,
T =5,000 tracks per platter, and P = 8 platters. The total capacity of this drive is
C = 512 x 1000 x 5000 x 8/2°° or 19 GB.

Maximum data transfer speed is governed by three factors: the time to move the
head to the desired track, referred to as the head seek time, the time for the
desired sector to appear under the read/write head, known as the rotational
latency, and the time to transfer the sector from the disk platter once the sector is
positioned under the head, known as the transfer time. Transfers to and from a
disk are always carried out in complete sectors. Partial sectors are never read or
written.

Head seek time is the largest contributor to overall access time of a disk. Manu-
facturers usually specify an average seek time, which is roughly the time required
for the head to travel half the distance across the disk. The rationale for this defi-
nition is that there is no way to know, a priori, which track the data is on, or
where the head is positioned when the disk access request is made. Thus it is
assumed that the head will, on average, be required to travel over half the surface
before arriving at the correct track. On modern disk drives average seek time is
approximately 10 ms.

Once the head is positioned at the correct track, it is again impossible to know
ahead of time how long it will take for the desired sector to appear under the
head. Therefore the average rotational latency is taken to be 1/2 the time of one
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complete revolution, which is on the order of 4-8 ms. The sector transfer time is
just the time for one complete revolution divided by the number of sectors per
track. If large amounts of data are to be transferred, then after a complete track is
transferred, the head must move to the next track. The parameter of interest here
is the track-to-track access time, which is approximately 2 ms (notice that the
time for the head to travel past multiple tracks is much less than 2 ms per track).
An important parameter related to the sector transfer time is the burst rate, the
rate at which data streams on or off the disk once the read/write operation has
started. The burst rate equals the disk speed in revolutions per second X the
capacity per track. This is not necessarily the same as the transfer rate, because
there is a setup time needed to position the head and synchronize timing for each
sector.

The maximum transfer rate computed from the factors above may not be real-
ized in practice. The limiting factor may be the speed of the bus interconnecting
the disk drive and its interface, or it may be the time required by the CPU to
transfer the data between the disk and main memory. For example, disks that
operate with the Small Computer Systems Interface (SCSI) standards have a
transfer rate between the disk and a host computer of from 5 to 40 MB/second,
which may be slower than the transfer rate between the head and the internal
buffer on the disk. Disk drives invariably contain internal buffers that help
match the speed of the disk with the speed of transfer from the disk unit to the
host computer.

Disk drives are delicate mechanisms.

The strength of a magnetic field drops off as the square of the distance from the
source of the field, and for that reason, it is important for the head of the disk to
travel as close to the surface as possible. The distance between the head and the
platter can be as small as 5 um. The engineering and assembly of a disk do not
have to adhere to such a tight tolerance — the head assembly is aerodynamically
designed so that the spinning motion of the disk creates a cushion of air that
maintains a distance between the heads and the platters. Particles in the air con-
tained within the disk unit that are larger than 5 um can come between the head
assembly and the platter, which results in a head crash.

Smoke particles from cigarette ash are 10 um or larger, and so smoking should
not take place when disks are exposed to the environment. Disks are usually
assembled into sealed units in clean rooms, so that virtually no large particles are
introduced during assembly. Unfortunately, materials used in manufacturing
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(such as glue) that are internal to the unit can deteriorate over time and can gen-
erate particles large enough to cause a head crash. For this reason, sealed disks
(formerly called Winchester disks) contain filters that remove particles generated
within the unit and that prevent particulate matter from entering the drive from
the external environment.

Floppy disks

A floppy disk, or diskette, contains a flexible plastic platter coated with a mag-
netic material like iron oxide. Although only a single side is used on one surface
of a floppy disk in many systems, both sides of the disks are coated with the same
material in order to prevent warping. Access time is generally slower than a hard
disk because a flexible disk cannot spin as quickly as a hard disk. The rotational
speed of a typical floppy disk mechanism is only 300 RPM, and may be varied as
the head moves from track to track to optimize data transfer rates. Such slow
rotational speeds mean that access times of floppy drives are 250-300 ms,
roughly 10 times slower than hard drives. Capacities vary, but range up to 1.44
MB.

Floppies are inexpensive because they can be removed from the drive mechanism
and because of their small size. The head comes in physical contact with the
floppy disk but this does not result in a head crash. It does, however, place wear
on the head and on the media. For this reason, floppies only spin when they are
being accessed.

When floppies were first introduced, they were encased in flexible, thin plastic
enclosures, which gave rise to their name. The flexible platters are currently
encased in rigid plastic and are referred to as “diskettes.”

Several high-capacity floppy-like disk drives have made their appearance in
recent years. The lomega Zip drive has a capacity of 100 MB, and access times
that are about twice those of hard drives, and the larger lomega Jaz drive has a
capacity of 2GB, with similar access times.

Another floppy drive recently introduced by Imation Corp., the SuperDisk, has
floppy-like disks with 120MB capacity, and in addition can read and write ordi-
nary 1.44 MB floppy disks.
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Disk file systems

A file is a collection of sectors that are linked together to form a single logical
entity. A file that is stored on a disk can be organized in a number of ways. The
most efficient method is to store a file in consecutive sectors so that the seek time
and the rotational latency are minimized. A disk normally stores more than one
file, and it is generally difficult to predict the maximum file size. Fixed file sizes
are appropriate for some applications, though. For instance, satellite images may
all have the same size in any one sampling.

An alternative method for organizing files is to assign sectors to a file on demand,
as needed. With this method, files can grow to arbitrary sizes, but there may be
many head movements involved in reading or writing a file. After a disk system
has been in use for a period of time, the files on it may become fragmented, that
is, the sectors that make up the files are scattered over the disk surfaces. Several
vendors produce optimizers that will defragment a disk, reorganizing it so that
each file is again stored on contiguous sectors and tracks.

A related facet in disk organization is interleaving. If the CPU and interface cir-
cuitry between the disk unit and the CPU all keep pace with the internal rate of
the disk, then there may still be a hidden performance problem. After a sector is
read and buffered, it is transferred to the CPU. If the CPU then requests the next
contiguous sector, then it may be too late to read the sector without waiting for
another revolution. If the sectors are interleaved, for example if a file is stored on
alternate sectors, say 2, 4, 6, etc., then the time required for the intermediate sec-
tors to pass under the head may be enough time to set up the next transfer. In
this scenario, two or more revolutions of the disk are required to read an entire
track, but this is less than the revolution per sector that would otherwise be
needed. If a single sector time is not long enough to set up the next read, than a
greater interleave factor can be used, such as 1:3 or 1:4. In Figure 8-3, an inter-
leave factor of 1:2 is used.

An operating system has the responsibility for allocating blocks (sectors) to a
growing file, and to read the blocks that make up a file, and so it needs to know
where to find the blocks. The master control block (MCB) is a reserved section
of a disk that keeps track of the makeup of the rest of the disk. The MCB is nor-
mally stored in the same place on every disk for a particular type of computer
system, such as the innermost track. In this way, an operating system does not
have to guess at the size of a disk; it only needs to read the MCB in the inner-
most track.
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Figure 8-4 shows one version of an MCB. Not all systems keep all of this infor-
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Figure 8-4 Simplified example of an MCB.

mation in the MCB, but it has to be kept somewhere, and some of it may even be
kept in part of the file itself. There are four major components to the MCB. The
Preamble section specifies information relating to the physical layout of the disk,
such as the number of surfaces, number of sectors per surface, etc. The Files sec-
tion cross references file names with the list of sectors of which they are com-
posed, and file attributes such as the file creation date, last modification date, the
identification of the owner, and protections. Only the starting sector is needed
for a fixed file size disk, otherwise, a list of all of the sectors that make up a file is
maintained.

The Free blocks section lists the positions of blocks that are free to be used for
new or growing files. The Bad blocks section lists positions of blocks that are free
but produce checksums (see Section 8.5) that indicate errors. The bad blocks are
thus unused.
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As a file grows in size, the operating system reads the MCB to find a free block,
and then updates the MCB accordingly. Unfortunately, this generates a great deal
of head movement since the MCB and free blocks are rarely (if ever) on the same
track. A solution that is used in practice is to copy the MCB to main memory
and make updates there, and then periodically update the MCB on the disk,
which is known as syncing the disk.

A problem with having two copies of the MCB, one on the disk and one in main
memory, is that if a computer is shut down before the main memory version of
the MCB is synched to the disk, then the integrity of the disk is destroyed. The
normal shutdown procedure for personal computers and other machines syncs
the disks, so it is important to shut down a computer this way rather than simply
shutting off the power. In the event that a disk is not properly synced, there is
usually enough circumstantial information for a disk recovery program to restore
the integrity of the disk, often with the help of a user. (Note: See problem 8.10 at
the end of the chapter for an alternative MCB organization that makes recovery
easier.)

MAGNETIC TAPE

A magnetic tape unit typically has a single read / write head, but may have sepa-
rate heads for reading and writing. A spool of plastic (Mylar) tape with a mag-
netic coating passes the head, which magnetizes the tape when writing or senses
stored data when reading. Magnetic tape is an inexpensive means for storing
large amounts of data, but access to any particular portion is slow because all of
the prior sections of the tape must pass the head before the target section can be
accessed.

Information is stored on a tape in two-dimensional fashion, as shown in Figure
8-5. Bits are stored across the width of the tape in frames and along the length of
the tape in records. A file is made up of a collection of (typically contiguous)
records. A record is the smallest amount of data that can be read from or written
to a tape. The reason for this is physical rather than logical. A tape is normally
motionless. When we want to write a record to the tape, then a motor starts the
tape moving, which takes a finite amount of time. Once the tape is up to speed,
the record is written, and the motion of the tape is then stopped, which again
takes a finite amount of time. The starting and stopping times consume sections
of the tape, which are known as inter-record gaps.

A tape is suitable for storing large amounts of data, such as backups of disks or
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Figure 8-5 A portion of a magnetic tape (adapted from [Hamacher, 1990]).

scanned images, but is not suitable for random access reading and writing. There
are two reasons for this. First, the sequential access can require a great deal of
time if the head is not positioned near the target section of tape. The second rea-
son is caused when records are overwritten in the middle of the tape, which is not
generally an operation that is allowed in tape systems. Although individual
records are the same size, the inter-record gaps eventually creep into the records
(this is called jitter) because starting and stopping is not precise.

A physical record may be subdivided into an integral number of logical
records. For example, a physical record that is 4096 bytes in length may be com-
posed of four logical records that are each 1024 bytes in length. Access to logical
records is managed by an operating system, so that the user has the perspective
that the logical record size relates directly to a physical record size, when in fact,
only physical records are read from or written to the tape. There are thus no
inter-record gaps between logical records.

Another organization is to use variable length records. A special mark is placed at
the beginning of each record so that there is no confusion as to where records
begin.

MAGNETIC DRUMS

Although they are nearly obsolete today, magnetic drum units have traditionally
been faster than magnetic disks. The reason for the speed advantage of drums is
that there is one stationary head per track, which means that there is no head
movement component in the access time. The rotation rate of a drum can be
much higher than a disk as a result of a narrow cylindrical shape, and rotational
delay is thus reduced.
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The configuration of a drum is shown in Figure 8-6. The outer surface of the
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Figure 8-6 A magnetic drum unit.

drum is divided into a number of tracks. The top and bottom of the drum are
not used for storage, and the interior of the drum is not used for storage, so there
is less capacity per unit volume for a drum unit than there is for a disk unit.

The transfer time for a sector on a drum is determined by the rotational delay
and the length of a sector. Since there is no head movement, there is no seek time
to consider. Nowadays, fixed head disks are configured in a similar manner to
drums with one head per track, but are considerably less expensive per stored bit
than drums since the surfaces of platters are used rather than the outside of a
drum.

OPTICAL DISKS

Several new technologies take advantage of optics to store and retrieve data. Both
the Compact Disc (CD) and the newer Digital Versatile Disc (DVD) employ
light to read data encoded on a reflective surface.

The Compact Disc

The CD was introduced in 1983 as a medium for playback of music. CDs have
the capacity to store 74 minutes of audio, in digital stereo (2-channel) format.
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The audio is sampled at 2 x 44,000 16-bit samples per second, or nearly 700 MB
capacity. Since the introduction of the CD in 1983, CD technology has
improved in terms of price, density, and reliability, which led to the development
of CD ROMs (CD read only memories) for computers, which also have the
same 700 MB capacity. Their low cost, only a few cents each when produced in
volume, coupled with good reliability and high capacity, have made CD ROMs
the medium of choice for distributing commercial software, replacing floppy
disks.

CD ROMs are “read only” because they are stamped from a master disk similar
to the way that audio CDs are created. A CD ROM disk consists of aluminum
coated plastic, which reflects light differently for lands or pits, which are smooth
or pitted areas, respectively, that are created in the stamping process. The master
is created with high accuracy using a high power laser. The pressed (stamped)
disks are less accurate, and so a complex error correction scheme is used which is
known as a crossinterleaved Reed Solomon error correcting code. Errors are
also reduced by assigning 1’s to pit-land and land-pit transitions, with runs of 0’s
assigned to smooth areas, rather than assigning 0’s and 1's to lands and pits, as in
Manchester encoding.

Unlike a magnetic disk in which all of the sectors on concentric tracks are lined
up like a sliced pie (where the disk rotation uses constant angular velocity), a
CD is arranged in a spiral format (using constant linear velocity) as shown in
Figure 8-7. The pits are laid down on this spiral with equal spacing from one end

Figure 8-7 Spiral storage format for a CD.

of the disk to the other. The speed of rotation, approximately the same 30 RPM
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as the floppy disk, is adjusted so that the disk moves more slowly when the head
is at the edge than when it is at the center. Thus CD ROMs suffer from the same
long access time as floppy disks because of the high rotational latency. CD ROM
drives are available with rotational speeds up to 24x, or 24 times the rotational
speed of an audio CD, with a resulting decrease in average access time.

CD ROM technology is appropriate for distributing large amounts of data inex-
pensively when there are many copies to be made, because the cost of creating a
master and pressing the copies is distributed over the cost of each copy. If only a
few copies are made, then the cost of each disk is high because CDs cannot be
economically pressed in small quantities. CDs also cannot be written after they
are pressed. A newer technology that addresses these problem is the write once
read many (WORM) optical disk, in which a low intensity laser in the CD con-
troller writes onto the optical disk (but only once for each bit location). The
writing process is normally slower than the reading process, and the controller
and media are more expensive than for CD ROMs.

The Digital Versatile Disc

A newer version of optical disk storage is the Digital Versatile Disc, or DVD.
There are industry standards for DVD-Audio, DVD-Video, and DVD-ROM
and DVD-RAM data storage. When a single side of the DVD is used, its storage
capacity can be up to 4.7 GB. The DVD standards also include the capability of
storing data on both sides in two layers on each side, for a total capacity of 17
GB. The DVD technology is an evolutionary step up from the CD, rather than
being an entirely new technology, and in fact the DVD player is backwardly
compatible—it can be used to play CDs and CD ROMs as well as DVDs.

Disk units, tape units, and drum units are all input/output (I1/0O) devices, and
they share a common use for mass storage. In this section, we look at a few
devices that are used exclusively for input of data. We start with one of the most
prevalent devices — the keyboard.

KEYBOARDS

Keyboards are used for manual input to a computer. A keyboard layout using the
ECMA-23 Standard (2nd ed.) is shown in Figure 8-8. The “QWERTY” layout
(for the upper left row of letters DO1 — D06) conforms to the traditional layout
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Figure 8-8 Keyboard layout for the ECMA-23 Standard (2nd ed.). Shift keys are frequently placed
in the B row.

used in typewriters. Frequently used letters are placed far apart so that the typist
is slowed and jams in mechanical typewriters are reduced. Although jams are not
a problem with electronic keyboards, the traditional layout prevails.

When a character is typed, a bit pattern is created that is transmitted to a host
computer. For 7-bit ASCII characters, only 128 bit patterns can be used, but
many keyboards that expand on the basic ECMA-23 standard use additional
modifier keys (shift, escape, and control) and so a seven-bit pattern is no longer
large enough. A number of alternatives are possible, but one method that has
gained acceptance is to provide one bit pattern for each modifier key and other
bit patterns for the remaining keys.

Other modifications to the ECMA-23 keyboard include the addition of function
keys (in row F, for example), and the addition of special keys such as tab, delete,
and carriage return. A modification that places frequently used keys together was
developed for the Dvorak keyboard as shown in Figure 8-9. Despite the perfor-

D'-PYFGCRLj

Figure 8-9 The Dvorak keyboard layout.

mance advantage of the Dvorak keyboard, it has not gained wide acceptance.
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BIT PADS

A digitizing tablet, or bit pad, is an input device that consists of a flat surface
and a stylus or puck as illustrated in Figure 8-10. The tablet has an embedded

Cable to host computer

4 )

Puck Cail

Buttons

Figure 8-10 A bit pad with a puck.

two-dimensional mesh of wires that detects an induced current created by the
puck as it is moved about the tablet. The bit pad transmits X-Y (horizontal-verti-
cal) positions and the state of the buttons on the puck (or stylus) either continu-
ously, or for an event such as a key click or a movement, depending on the
control method. Bit pads are commonly used for entering data from maps, pho-
tographs, charts, or graphs.

MICE AND TRACKBALLS

A mouse is a hand-held input device that consists of a rubber ball on the bottom
and one or more buttons on the top as illustrated in the left side of Figure 8-11.
As the mouse is moved, the ball rotates proportional to the distance moved.
Potentiometers within the mouse sense the direction of motion and the distance
traveled, which are reported to the host along with the state of the buttons. Two
button events are usually distinguished: one for the key-down position and one
for the key-up position.

A trackball can be thought of as a mouse turned upside down. The trackball
unit is held stationary while the ball is manually rotated. The configuration of a
trackball is shown in the right side of Figure 8-11.
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Figure 8-11 A three-button mouse (left) and a three-button trackball (right).

An optical mouse replaces the ball with a light emitting diode (LED) and uses
a special reflective mousepad that consists of alternating reflective and absorptive
horizontal and vertical stripes. Motion is sensed through transitions between
reflective and absorptive areas. The optical mouse does not accumulate dirt as
readily as the ball mouse, and can be used in a vertical position or even in a
weightless environment. The natural rotation of the wrist and elbow, however, do
not match the straight horizontal and vertical stripes of the optical mousepad,
and so some familiarity is required by the user in order to use the device effec-
tively.

LIGHTPENS AND TOUCH SCREENS

Two devices that are typically used for selecting objects are lightpens and touch
screens. A lightpen does not actually produce light, but senses light from a video
screen as illustrated in Figure 8-12. An electron beam excites a phosphor coating

Figure 8-12 A user selecting an object with a lightpen.
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on the back of the display surface. The phosphor glows and then dims as it
returns to its natural state. Each individual spot is refreshed at a rate of 30 — 60
Hz, so that a user perceives a continuous image.

When a dim spot is refreshed, it becomes brighter, and this change in intensity
signals the location of the beam at a particular time. If the lightpen is positioned
at a location where the phosphor is refreshed, then the position of the electron
beam locates the position of the pen. Since the lightpen detects intensity, it can
only distinguish among illuminated areas. Dark areas of the screen all appear the
same since there is no change in intensity over time.

A touch screen comes in two forms, photonic and electrical. An illustration of
the photonic version is shown in Figure 8-13. A matrix of beams covers the

4 "y

LEDs —
(sources)

User breaks
beams

Detector

Figure 8-13 A user selecting an object on a touch screen.

screen in the horizontal and vertical dimensions. If the beams are interrupted (by
a finger for example) then the position is determined by the interrupted beams.

In an alternative version of the touch screen, the display is covered with a touch
sensitive surface. The user must make contact with the screen in order to register
a selection.

JOYSTICKS

A joystick indicates horizontal and vertical position by the distance a rod that
protrudes from the base is moved (see Figure 8-14). Joysticks are commonly used
in video games, and for indicating position in graphics systems. Potentiometers
within the base of the joystick translate X-Y position information into voltages,
which can then be encoded in binary for input to a digital system. In a
spring-loaded joystick, the rod returns to the center position when released. If
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) —

Figure 8-14 A joystick with a selection button and a rotatable rod.

the rod can be rotated, then an additional dimension can be indicated, such as
height.

There are many types of output devices. In the sections below, we explore two
common output devices: the laser printer and the video display.

LASER PRINTERS

A laser printer consists of a charged drum in which a laser discharges selected
areas according to a bit mapped representation of a page to be printed. As the
drum advances for each scan line, the charged areas pick up electrostatically sen-
sitive toner powder. The drum continues to advance, and the toner is transferred
to the paper, which is heated to fix the toner on the page. The drum is cleaned of
any residual toner and the process repeats for the next page. A schematic diagram
of the process is shown in Figure 8-15.

Since the toner is a form of plastic, rather than ink, it is not absorbed into the
page but is melted onto the surface. For this reason, a folded sheet of laser
printed paper will display cracks in the toner along the fold, and the toner is
sometimes unintentionally transferred to other materials if exposed to heat or
pressure (as from a stack of books).

Whereas older printers could print only ASCII characters, or occasionally crude
graphics, the laser printer is capable of printing arbitrary graphical information.
Several languages have been developed for communicating information from
computer to printer. One of the most common is the Adobe PostScript lan-
guage. PostScript is a stack-based language that is capable of describing objects as
diverse as ASCII characters, high level shapes such as circles and rectangles, and
low-level bit maps. It can be used to describe foreground and background colors,
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Figure 8-15 Schematic of a laser printer (adapted from [Tanenbaum, 1999]).

and fill colors with which to fill objects.

VIDEO DISPLAYS

A video display, or monitor, consists of a luminescent display device such as a
cathode ray tube (CRT) or a liquid crystal panel, and controlling circuitry. In a
CRT, vertical and horizontal deflection plates steer an electron beam that sweeps
the display screen in raster fashion (one line at a time, from left to right, starting

at the top).

A configuration for a CRT is shown in Figure 8-16. An electron gun generates a

Vertical
deflection plate

Horizontal
deflection plate

| «—— Phosphor
coated screen
Electron gun
Horizontal control
Vertical control
Intensity control

Figure 8-16 A CRT with a single electron gun.

stream of electrons that is imaged onto a phosphor coated screen at positions
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controlled by voltages on the vertical and horizontal deflection plates. Electrons
are negatively charged, and so a positive voltage on the grid accelerates electrons
toward the screen and a negative voltage repels electrons away from the screen.
The color produced on the screen is determined by the characteristics of the
phosphor. For a color CRT, there are usually three different phosphor types (red,
green, and blue) that are interleaved in a regular pattern, and three guns, which
produce three beams that are simultaneously deflected on the screen.

A simple display controller for a CRT is shown in Figure 8-17. The writing of

| Column 5| Row
Cl OCk > counter 2 counter
(mod 640) (mod 480)
TIO horizont?l deflection One output
P ate control pulse per 640
< columns

To vertical deflection plate control

<
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c Y VY
50 Red <= 4 Address .
c g 8 |5 RAM =] = SCreen
28 Gren<Z (UT 5l PAMZ image
g =) g |O 3l 8 |O fbre}rfneg loaded by
E:@ Blue <—< Input urrer computer

]
LUT loaded from computer

Figure 8-17  Display controller for a 640x480 color monitor (adapted from [Hamacher et al.,
1990]).

information on the screen is controlled by the “dot clock,” which generates a
continuous stream of alternating 1's and O’s at a rate that corresponds to the
update time for a single spot on the screen. A single spot is called a picture ele-
ment, or pixel. The display controller in Figure 8-17 is for a screen that is 640
pixels wide by 480 pixels high. A column counter is incremented from 0 to 639
for each row, then repeats, and a row counter is incremented from 0 to 479,
which then repeats. The row and column addresses index into the frame buffer,
or “display RAM” that holds the bit patterns corresponding to the image that is
to be displayed on the screen. The contents of the frame buffer are transferred to
the screen from 30 to 100 times per second. This technique of mapping a RAM
area to the screen is referred to as memory-mapped video. Each pixel on the
screen may be represented by from 1 to 12 or more bits in the frame buffer.
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When there is only a single bit per pixel, the pixel can only be on or off, black or
white; multiple bits per pixel allow a pixel to have varying colors, or shades of

gray.

Each pixel in the display controller of Figure 8-17 is represented by eight bits in
the frame buffer, which means that one out of 28, or 256 different intensities can
be used for each pixel. In a simple configuration the eight bits can be partitioned
for the red, green, and blue (R, G, and B) inputs to the CRT as three bits for red,
three bits for green, and two bits for blue. An alternative is to pass the eight-bit
pixel value to a color lookup table (LUT) in which the eight-bit value is trans-
lated into 256 different 24-bit colors. Eight bits of the 24-bit output are then
used for each of the red, green, and blue guns. A total of 224 different colors can
be displayed, but only 28 of the 224 can be displayed at any one time since the
LUT has only 28 entries. The LUT can be reloaded as necessary to select differ-
ent subsets of the 224 colors. For example, in order to display a gray scale image
(no color), we must have R=G=B and so a ramp from 0 to 255 is stored for each
of the red, green, and blue guns.

The human eye is relatively slow when compared with the speed of an electronic
device, and cannot perceive a break in motion that happens at a rate of about 25
Hz or greater. A computer screen only needs to be updated 25 or 30 times a sec-
ond in order for an observer to perceive a continuous image. Whereas video
monitors for computer applications can have any scan rate that the designer of
the monitor and video interface card wish, in television applications the scan rate
must be standardized. In Europe, a rate of 25 Hz is used for standard television,
and a rate of 30 Hz is used in North America. The phosphor types used in the
screens do not have a long persistence, and so scan lines are updated alternately
in order to reduce flicker. The screen is thus updated at a 50 Hz rate in Europe
and at a 60 Hz rate in North America, but only alternating lines are updated on
each sweep. For high resolution graphics, the entire screen may be updated at a
50 Hz or 60 Hz rate, rather than just the alternating lines. Many observers
believe that the European choice of 50 Hz was a bad one, because many viewers
can detect the 50 Hz as a flicker in dim lighting or when viewed at the periphery
of vision.

On the other hand, the Europeans point to the United States NTSC video trans-
mission standard as being inferior to their PAL system, referring to the NTSC
system as standing for “Never The Same Color,” because of its poorer ability to
maintain consistent color from frame to frame.
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The data rates between computer and video monitor can be quite high. Consider
that a 24-bit monitor with 1024 x 768 pixel resolution and a refresh rate of 60
Hz will requires a bandwidth (that is, the amount of information that can be
carried over a given period of time) of 3 bytes/pixel x (1024 x 768) pixels x 60
Hz, or roughly 140 MB per second. Fortunately, the hardware described above
maps the frame buffer onto the screen without CPU intervention, but it is still
up to the CPU to output pixels to the frame buffer as the image on the screen
changes.

“Communication” is the process of transferring information from a source to a
destination, and “telecommunications” is the process of communicating at a dis-
tance. Communication systems range from busses within an integrated circuit to
the public telephone system, and radio and television. Wide-area telecommuni-
cation systems have become very complex, with all combinations of voice, video,
and data being transferred by wire, optical fiber, radio, and microwaves. The
routes that communication takes may traverse cross-country, under water,
through local radio cells, and via satellite. Data that originates as analog voice sig-
nals may be converted to digital data streams for efficient routing over long dis-
tances, and then converted back to an analog signal, without the knowledge of
those communicating.

In this chapter we focus on the relatively short range communications between
entities located at distances ranging from millimeters to a kilometer or so. An
example of the former is the interactions between a CPU and main memory, and
an example of the latter is a local area network (LAN). The LAN is used to
interconnect computers located within a kilometer or so of one another. In
Chapter 10 we extend our discussion to wide area networks (WANSs) as typified
by the Internet.

In the next sections we discuss communications from the viewpoints of commu-
nications at the CPU and motherboard level, and then branch out to the local
area network.

BUSSES

Unlike the long distance telecommunications network, in which there may be
many senders and receivers over a large geographical distance, a computer has
only a small number of devices that are geographically very local, within a few
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millimeters to a few meters of each other. In a worst case scenario, all devices
need to simultaneously communicate with every other device, in which N?/2
links are needed for N devices. The number of links becomes prohibitively large
for even small values of N, but fortunately, as for long distance telecommunica-
tion, not all devices need to simultaneously communicate.

A bus is a common pathway that connects a number of devices. An example of a
bus can be found on the motherboard (the main circuit board that contains the
central processing unit) of a personal computer, as illustrated in Figure 8-18. A

<-Plug-in card
1/0O bus connector
Integrated Circuits

Memory / Motherboard

gpug =

- JEHEHHE 1=
\_/

Connectors for plug-in cards

Figure 8-18 A motherboard of a personal computer (top view).

typical motherboard contains integrated circuits (ICs) such as the CPU chip
and memory chips, board traces (wires) that connect the chips, and a number of
busses for chips or devices that need to communicate with each other. In the
illustration, an 1/O bus is used for a number of cards that plug into the connec-
tors, perpendicular to the motherboard in this example configuration.

Bus Structure, Protocol, and Control

A bus consists of the physical parts, like connectors and wires, and a bus proto-
col. The wires can be partitioned into separate groups for control, address, data,
and power as illustrated in Figure 8-19. A single bus may have a few different
power lines, and the example shown in Figure 8-19 has lines for ground (GND)
atOV,+5V, and =15 V.
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Figure 8-19  Simplified illustration of a bus.

The devices share a common set of wires, and only one device may send data at
any one time. All devices simultaneously listen, but normally only one device
receives. Only one device can be a bus master, and the remaining devices are
then considered to be slaves. The master controls the bus, and can be either a
sender or a receiver.

An advantage of using a bus is to eliminate the need for connecting every device
with every other device, which avoids the wiring complexity that would quickly
dominate the cost of such a system. Disadvantages of using a bus include the
slowdown introduced by the master/slave configuration, the time involved in
implementing a protocol (see below), and the lack of scalability to large sizes due
to fan-out and timing constraints.

A bus can be classified as one of two types: synchronous or asynchronous. For a
synchronous bus, one of the devices that is connected to the bus contains a crys-
tal oscillator (a clock) that sends out a sequence of 1’s and 0’ at timed intervals as
illustrated in Figure 8-20. The illustration shows a train of pulses that repeat at

1 0101010

cysd | [T [T [T ey
Oscillator <— Logica 0(0V)
10ns

Figure 8-20 A 100 MHz bus clock.

10 ns intervals, which corresponds to a clock rate of 100 MHz. Ideally, the clock
would be a perfect square wave (instantaneous rise and fall times) as shown in the
figure. In practice, the rise and fall times are approximated by a rounded, trape-
zoidal shape.

Bus Clocking

For a synchronous bus, which is discussed below, a clock signal is used to syn-
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chronize bus operations. This bus clock is generally derived from the master sys-
tem clock, but it may be slowed down with respect to the master clock, especially
in higher-speed CPUs. For example, one model of the Power Macintosh G3
computer has a system clock speed of 333 MHz, but a bus clock speed of 66
MHz, which is slower by a factor of 5. This is because memory access times are
so much longer than typical CPU clock speeds. Typical cache memory has an
access time of around 20 ns, compared to a 3 ns clock period for the processor
described above.

In addition to the bus clock running at a slower speed than the processor, several
bus clock cycles are usually required to effect a bus transaction, referred to as a
bus cycle. Typical bus cycles run from two to five bus clock periods in duration.

The Synchronous Bus

As an example of how communication takes place over a synchronous bus, con-
sider the timing diagram shown in Figure 8-21 which is for a synchronous read
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I I I I
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| 1 1 1
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Time -

Figure 8-21 Timing diagram for a synchronous memory read (adapted from [Tanenbaum, 1999]).

of a word of memory by a CPU. At some point early in time interval T4, while
the clock is high, the CPU places the address of the location it wants to read onto
the address lines of the bus. At some later time during T, after the voltages on
the address lines have become stable, or “settled,” the MREQ and RD lines are
asserted by the CPU. MREQ informs the memory that it is selected for the
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transfer (as opposed to another device, like a disk). The RD line informs the
selected device to perform a read operation. The overbars on MREQ and RD
indicate that a 0 must be placed on these lines in order to assert them.

The read time of memory is typically slower than the bus speed, and so all of
time interval T, is spent performing the read, as well as part of T5. The CPU
assumes a fixed read time of three bus clocks, and so the data is taken from the
bus by the CPU during the third cycle. The CPU then releases the bus by
de-asserting MREQ and RD in T3. The shaded areas of the data and address
portions of the timing diagram indicate that these signals are either invalid or
unimportant at those times. The open areas, such as for the data lines during Tj,
indicate valid signals. Open and shaded areas are used with crossed lines at either
end to indicate that the levels of the individual lines may be different.

The Asynchronous Bus

If we replace the memory on a synchronous bus with a faster memory, then the
memory access time will not improve because the bus clock is unchanged. If we
increase the speed of the bus clock to match the faster speed of the memory, then
slower devices that use the bus clock may not work properly.

An asynchronous bus solves this problem, but is more complex, because there is
no bus clock. A master on an asynchronous bus puts everything that it needs on
the bus (address, data, control), and then asserts MSYN (master synchroniza-
tion). The slave then performs its job as quickly as it can, and then asserts
SSYN (slave synchronization) when it is finished. The master then de-asserts
MSYN, which signals the slave to de-assert SSYN . In this way, a fast mas-
ter/slave combination responds more quickly than a slow master/slave combina-
tion.

As an example of how communication takes place over an asynchronous bus,
consider the timing diagram shown in Figure 8-22. In order for a CPU to read a
word from memory, it places an address on the bus, followed by asserting
MREQ and RD. After these lines settle, the CPU asserts MSYN . This event
triggers the memory to perform a read operation, which results in SSYN even-
tually being asserted by the memory. This is indicated by the cause-and-effect
arrow between MSYN and SSYN shown in Figure 8-22. This method of syn-
chronization is referred to as a “full handshake.” In this particular implementa-
tion of a full handshake, asserting MSYN initiates the transfer, followed by the
slave asserting SSYN , followed by the CPU de-asserting MSYN , followed by
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Figure 8-22  Timing diagram for asynchronous memory read (adapted from [Tanenbaum, 1999]).

the memory de-asserting SSYN . Notice the absence of a bus clock signal.

Asynchronous busses are more difficult to debug than synchronous busses when
there is a problem, and interfaces for asynchronous busses are more difficult to
make. For these reasons, synchronous busses are very common, particularly in
personal computers.

Bus Arbitration—Masters and Slaves

Suppose now that more than one device wants to be a bus master at the same
time. How is a decision made as to who will be the bus master? This is the bus
arbitration problem, and there are two basic schemes: centralized and decen-
tralized (distributed). Figure 8-23 illustrates three organizations for these two
schemes. In Figure 8-23a, a centralized arbitration scheme is used. Devices 0
through n are all attached to the same bus (not shown), and they also share a bus
request line that goes into an arbiter. When a device wants to be a bus master, it
asserts the bus request line. When the arbiter sees the bus request, it determines if
a bus grant can be issued (it may be the case that the current bus master will not
allow itself to be interrupted). If a bus grant can be issued, then the arbiter asserts
the bus grant line. The bus grant line is daisy chained from one device to the
next. The first device that sees the asserted bus grant and also wants to be the bus
master takes control of the bus and does not propagate the bus grant to higher
numbered devices. If a device does not want the bus, then it simply passes the



CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 321

Bus request

(@ | Arbiter | Busgrant

1

0 1 2 n

Bus request level 0

(b) | Arbiter : Bus request level k
A
AR 3
Bus grant level O
Bus grant level k 0 1 > L n
Bus request
© Busy
+5V
ey YL WL I
grant

0 1 2 o n

Figure 8-23  (a)Simple centralized bus arbitration; (b) centralized arbitration with priority levels;
(c) decentralized bus arbitration. (Adapted from [Tanenbaum, 1999]).

bus grant to the next device. In this way, devices that are electrically closer to the
arbiter have higher priorities than devices that are farther away.

Sometimes an absolute priority ordering is not appropriate, and a number of bus
request/bus grant lines are used as shown in Figure 8-23(b). Lower numbered
bus request lines have higher priorities than higher numbered bus request lines.
In order to raise the priority of a device that is far from the arbiter, it can be
assigned to a lower numbered bus request line. Priorities are assigned within a
group on the same bus request level by electrical proximity to the arbiter.

In a third approach, a decentralized bus arbitration scheme is used as illustrated
in Figure 8-23(c). Notice the lack of a central arbiter. A device that wants to
become a bus master first asserts the bus request line, and then it checks if the
bus is busy. If the busy line is not asserted, then the device sends a O to the next
higher numbered device on the daisy chain, asserts the busy line, and de-asserts
the bus request line. If the bus is busy, or if a device does not want the bus, then
it simply propagates the bus grant to the next device.

Arbitration needs to be a fast operation, and for that reason, a centralized scheme



322

CHAPTER 8

INPUT, OUTPUT, AND COMMUNICATION

will only work well for a small number of devices (up to about eight). For a large
number of devices, a decentralized scheme is more appropriate.

Given a system that makes use of one of these arbitration schemes, imagine a sit-
uation in which n card slots are used, and then card m is removed, where m < n.
What happens? Since each bus request line is directly connected to all devices in
a group, and the bus grant line is passed through each device in a group, a bus
request from a device with an index greater than m will never see an asserted bus
grant line, which can result in a system crash. This can be a frustrating problem
to identify, because a system can run indefinitely with no problems, until the
higher numbered device is accessed.

When a card is removed, higher cards should be repositioned to fill in the miss-
ing slot, or a dummy card that continues the bus grant line should be inserted in
place of the removed card. Fast devices (like disk controllers) should be given
higher priority than slow devices (like terminals), and should thus be placed close
to the arbiter in a centralized scheme, or close to the beginning of the Bus grant
line in a decentralized scheme.

COMMUNICATION BETWEEN PROCESSORS AND MEMORIES

Computer systems have a wide range of communication tasks. The CPU must
communicate with memory, and with a wide range of 1/0 devices, ranging from
extremely slow devices such as keyboards, to high-speed devices like disk drives
and network interfaces. In fact, there may be multiple CPUs that communicate
with one another either directly or through a shared memaory, in a typical config-
uration.

Three methods for managing input and output are programmed /O (also
known as polling), interrupt driven 1/0, and direct memory access (DMA).

Programmed 1/0

Consider reading a block of data from a disk. In programmed 1/O, the CPU
polls each device to see if it needs servicing. In a restaurant analogy, the host
would approach the patron and ask if the patron is ready.

The operations that take place for programmed 1/O are shown in the flowchart
in Figure 8-24. The CPU first checks the status of the disk by reading a special
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Figure 8-24 Programmed 1/O flowchart for a disk transfer.

register that can be accessed in the memory space, or by issuing a special 1/0
instruction if this is how the architecture implements I/O. If the disk is not ready
to be read or written, then the process loops back and checks the status continu-
ously until the disk is ready. This is referred to as a busy-wait. When the disk is
finally ready, then a transfer of data is made between the disk and the CPU.

After the transfer is completed, the CPU checks to see if there is another commu-
nication request for the disk. If there is, then the process repeats, otherwise the
CPU continues with another task.
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In programmed 1/O the CPU wastes time polling devices. Another problem is
that high priority devices are not checked until the CPU is finished with its cur-
rent 1/O task, which may have a low priority. Programmed 1/O is simple to
implement, however, and so it has advantages in some applications.

Interrupt-driven 1/0

With interrupt driven 1/O, the CPU does not access a device until it needs ser-
vicing, and so it does not get caught up in busy-waits. In interrupt-driven 1/O,
the device requests service through a special interrupt request line that goes
directly to the CPU. The restaurant analogy would have the patron politely tap-
ping silverware on a water glass, thus interrupting the waiter when service is
required.

A flowchart for interrupt driven 1/O is shown in Figure 8-25. The CPU issues a
request to the disk for reading or for writing, and then immediately resumes exe-
cution of another process. At some later time, when the disk is ready, it inter-
rupts the CPU. The CPU then invokes an interrupt service routine (ISR) for
the disk, and returns to normal execution when the interrupt service routine
completes its task. The ISR is similar in structure to the procedure presented in
Chapter 4, except that interrupts occur asynchronously with respect to the pro-
cess being executed by the CPU: an interrupt can occur at any time during pro-
gram execution.

There are times when a process being executed by the CPU should not be inter-
rupted because some critical operation is taking place. For this reason, instruc-
tion sets include instructions to disable and enable interrupts under programmed
control. (The waiter can ignore the patron at times.) Whether or not interrupts
are accepted is generally determined by the state of the Interrupt Flag (IF) which
is part of the Processor Status Register. Furthermore, in most systems priorities
are assigned to the interrupts, either enforced by the processor or by a peripheral
interrupt controller (PIC). (The waiter may attend to the head table first.) At
the top priority level in many systems, there is a non-maskable interrupt (NMI)
which, as the name implies, cannot be disabled. (The waiter will in all cases pay
attention to the fire alarm!) The NMI is used for handling potentially cata-
strophic events such as power failures, and more ordinary but crucially uninter-
ruptible operations such as file system updates.

At the time when an interrupt occurs (which is sometimes loosely referred to as a
trap, even though traps usually have a different meaning, as explained in Chap-
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Figure 8-25 Interrupt driven 1/0O flowchart for a disk transfer.

ter 6), the Processor Status Register and the Program Counter (%psr and %pc
for the ARC) are automatically pushed onto the stack, and the Program Counter
is loaded with the address of the appropriate interrupt service routine. The pro-
cessor status register is pushed onto the stack because it contains the interrupt
flag (IF), and the processor must disable interrupts for at least the duration of the
first instruction of the ISR. (Why?) Execution of the interrupt routine then
begins. When the interrupt service routine finishes, execution of the interrupted
program then resumes.

The ARC j npl instruction (see Chapter 5) will not work properly for resuming
execution of the interrupted routine, because in addition to restoring the pro-
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gram counter contents, the processor status register must be restored. Instead,
the ret t (return from trap) instruction is invoked, which reverses the interrupt
process and restores the %psr and %pc registers to their values prior to the inter-
rupt. In the ARC architecture, rett is an arithmetic format instruction with
op3 = 111001, and an unused r d field (all zeros).

Direct Memory Access (DMA)

Although interrupt driven 1/O frees the CPU until the device requires service,
the CPU is still responsible for making the actual data transfer. Figure 8-26 high-

CPU Memory Disk
AN AAA A
1 | 1 1
1 | 1 |
: L 7 : Without DMA : L7 With DMA L 7 :
T O ——————— T

Figure 8-26 DMA transfer from disk to memory bypasses the CPU.

lights the problem. In order to transfer a block of data between the memory and
the disk using either programmed I/O or interrupt driven 1/O, every word trav-
els over the bus twice: first to the CPU, then again over the bus to its destination.

A DMA device can transfer data directly to and from memory, rather than using
the CPU as an intermediary, and can thus improve the speed of communication
over the bus. In keeping with the restaurant analogy, the host serves everyone at
one table before serving anyone at another table. DMA services are usually pro-
vided by a DMA controller, which is itself a specialized processor whose specialty
is transferring data directly to or from 1/O devices and memory. Most DMA con-
trollers can also be programmed to make memory-to-memory block moves. A
DMA device thus takes over the job of the CPU during a transfer. In setting up
the transfer, the CPU programs the DMA device with the starting address in
main memory, the starting address in the device, and the length of the block to
be transferred.

Figure 8-27 illustrates the DMA process for a disk transfer. The CPU sets up the
DMA device and then signals the device to start the transfer. While the transfer is
taking place, the CPU continues execution of another process. When the DMA
transfer is completed, the device informs the CPU through an interrupt. A sys-
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Figure 8-27 DMA flowchart for a disk transfer.

tem that implements DMA thus also implements interrupts as well.

If the DMA device transfers a large block of data without relinquishing the bus,
the CPU may become starved for instructions or data, and thus its work is halted
until the DMA transfer has completed. In order to alleviate this problem, DMA
controllers usually have a “cycle-stealing” mode. In cycle-stealing DMA the con-
troller acquires the bus, transfers a single byte or word, and then relinquishes the
bus. This allows other devices, and in particular the CPU, to share the bus dur-
ing DMA transfers. In the restaurant analogy, a patron can request a check while
the host is serving another table.

I/0 CHANNELS

The DMA concept is an efficient method of transferring blocks of data over a
bus, but there is a need for a more sophisticated approach for complex systems.
There are a number of reasons for not connecting 1/O devices directly to the sys-
tem bus:

« The devices might have complex operating characteristics, and the CPU should
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be insulated from this complexity.

« Peripherals might be slow, and since the system bus is fast, overall performance
is degraded if direct access to the system bus is allowed by all devices.

« Peripherals sometimes use different data formats and word lengths than the
CPU (such as serial vs. parallel, byte vs. word, etc.)

1/0O for complex systems can be handled through an 1/0 channel, or I/0 mod-
ule, that interfaces peripheral devices to the system bus. An I/O channel is a high
level controller that can execute a computer program, which is its distinguishing
characteristic. This program might seek a head across a disk, or collect characters
from a number of keyboards into a block and transmit the block using DMA.

There are two types of channels, as illustrated in Figure 8-28. A selector channel

System Bus
| Seector
— 7| Channd
1/0 1/10
Controller Controller
S|IS|E]|=
S|®8|o
<|alo|&

- | Multiplexor
~| Channel

A

]

1/0 1/0
Controller Controller

o) 0 0

Figure 8-28 A selector channel and a multiplexor channel.
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controls several devices, but handles transfers for a single device at a time. A
selector channel is typically used for high speed devices like hard disks. A multi-
plexor channel handles transfers for several devices at a time. A multiplexor
channel comes in two forms: a byte multiplexor, which interleaves bytes from a
number of low speed devices into a single stream, or a block multiplexor, which
interleaves blocks from a number of high speed devices into a single stream.

For both types of channels, concurrent operations can take place among devices
and the rest of the system. For instance, a selector channel may perform a head
seek operation while a multiplexor channel performs a block transfer over the
system bus. Only a single block at a time can be transferred over the system bus,
however.

MODEMS

People communicate over telephone lines by forming audible sounds that are
converted to electrical signals, which are transmitted to a receiver where they are
converted back to audible sounds. This does not mean that people always need
to speak and hear in order to communicate over a telephone line: this audible
medium of communication can also be used to transmit non-audible informa-
tion that is converted to an audible form.

Figure 8-29 shows a configuration in which two computers communicate over a

Telephone Line

Figure 8-29 Communication over a telephone line with modems.

telephone line through the use of modems (which is a contraction of modulator
/ demodulator). A modem transforms an electrical signal from a computer into
an audible form for transmission, and performs the reverse operation when
receiving.

Modem communication over a telephone line is normally performed in serial
fashion, a single bit at a time, in which the bits have an encoding that is appro-
priate for the transmission medium. There are a number of forms of modulation
used in communication, which are encodings of data into the medium. Figure
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8-30 illustrates three common forms of modulation.

o {1 /{0 {110

Digita Signa

AM

FM

PM

Figure 8-30 Three common forms of modulation.

Amplitude modulation (AM) uses the strength of the signal to encode 1's and
0’s. AM lends itself to simple implementations that are inexpensive to build.
However, since there is information in the amplitude of the signal, anything that
changes the amplitude affects the signal. For an AM radio, a number of situa-
tions affect the amplitude of the signal (such as driving under a bridge or near
electrical lines, lightning, etc.).

Frequency modulation (FM) is not nearly as sensitive to amplitude related
problems because information is encoded in the frequency of the signal rather
than in the amplitude. The FM signal on a radio is relatively static-free, and does
not diminish as the receiver passes under a bridge.

Phase modulation (PM) is most typically used in modems, where four phases
(90 degrees apart) double the data bandwidth by transmitting two bits at a time
(which are referred to as dibits). The use of phase offers a degree of freedom in
addition to frequency, and is appropriate when the number of available frequen-
cies is restricted.

In pulse code modulation (PCM) an analog signal is sampled and converted
into binary. Figure 8-31 shows the process of converting an analog signal into a
PCM binary sequence. The original signal is sampled at twice the rate of the
highest significant frequency, which produces values at discrete intervals. The
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Figure 8-31 Conversion of an analog signal to a PCM binary sequence.

samples are encoded in binary and catenated to produce the PCM sequence.

PCM is a digital approach, and has all of the advantages of digital information
systems. By using repeaters at regular intervals the signal can be perfectly
restored. By decreasing the distance between repeaters, the effective bandwidth of
a channel can be significantly increased. Analog signals, however, can at best be
guessed and can only be approximately restored. There is no good way to make
analog signals perfect in a noisy environment.

Shannon’s result about the data rate of a noisy channel applies here:
data rate = bandwidth x log(1 + S/N)

where S is the signal and N is the noise. Since a digital signal can be made to use
arbitrarily noisy channels (in which S/N is large) because of its noise immunity,
higher data rates can be achieved over the same channel. This is one of the driv-
ing forces in the move to digital technology in the telecommunications industry.
The transition to all-digital has also been driven by the rapid drop in the cost of
digital circuitry.

LOCAL AREA NETWORKS

A local area network (LAN) is a communication medium that interconnects
computers over a limited geographical distance of a few miles at most. A LAN
allows a set of closely grouped computers and other devices to share common
resources such as data, software applications, printers, and mass storage.
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A LAN consists of hardware, software, and protocols. The hardware may be in
the form of cables and interface circuitry. The software is typically embedded in
an operating system, and is responsible for connecting a user to the network. The
protocols are sets of rules that govern format, timing, sequencing, and error con-
trol. Protocols are important for ensuring that data is packaged for injection into
the network and is extracted from the network properly. The data to be transmit-
ted is decomposed into pieces, each of which is prepended with a header that
contains information about parameters such as the destination, the source, error
protection bits, and a time stamp. The data, which is often referred to as the pay-
load, is combined with the header to form a packet that is injected into the net-
work. A receiver goes through the reverse process of extracting the data from the
packet.

The process of communicating over a network is normally carried out in a hier-
archy of steps, each of which has its own protocol. The steps must be followed in
sequence for transmission, and in the reverse sequence when receiving. This leads
to the notion of a protocol stack which isolates the protocol being used within
the hierarchy.

The OSI Model

The Open System Interconnection (OSI) model is a set of protocols established
by the International Standards Organization (ISO) in an attempt to define and
standardize data communications. The OSI model has been largely displaced by
the Internet TCP/IP model (see Chapter 10) but still heavily influences network
communication, particularly for telecommunication companies.

In the OSI model the communication process is divided into seven layers: appli-
cation, presentation, session, transport, network, data link, and physical as
summarized in Figure 8-32. As an aid in remembering the layers, the mnemonic
is sometimes used: A Powered-down System Transmits No Data Packets.

The OSI model does not give a single definition of how data communications
actually take place. Instead, the OSI model serves as a reference for how the pro-
cess should be divided and what protocols should be used at each layer. The con-
cept is that equipment providers can select a protocol for each layer while
ensuring compatibility with equipment from other providers that may use differ-
ent protocols.

The highest level in the OSI model is the application layer, which provides an



CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 333

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. DatalLink
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Figure 8-32 The seven layers of the OSI model.

interface for allowing applications to communicate with each other over the net-
work. It offers high level support for applications that interact over the network
such as database services for network database programs, message handling for
electronic mail (e-mail) programs, and file handling for file transfer programs.

The presentation layer ensures that information is presented to communication
applications in a common format. This is necessary because different systems
may use different internal data formats. For instance, some systems use a
big-endian internal format while others use a little-endian internal format. The
function of the presentation layer is to insulate the applications from these differ-
ences.

The session layer establishes and terminates communication sessions between
host processes. The session layer is responsible for maintaining the integrity of
communication even if the layers below it lose data. It also synchronizes the
exchange, and establishes reference points for continuing an interrupted commu-
nication.

The transport layer ensures reliable transmission from source to destination. It
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allocates communication resources so that data is transferred both quickly and
cost effectively. The session layer makes requests to the transport layer, which pri-
oritizes the requests and makes trade-offs among speed, cost, and capacity. For
example, a transmission may be split into several packets which are transmitted
over a number of networks in order to obtain a faster communication time.
Packets may thus arrive at the destination out of order, and it is the responsibility
of the transport layer to ensure that the session layer receives data in the same
order it is sent. The transport layer provides error recovery from source to desti-
nation, and also provides flow control (that is, it ensures that the speeds of the
sender and receiver are matched).

The network layer routes data through intermediate systems and subnetworks.
Unlike the upper layers, the network layer is aware of the network topology,
which is the connectivity among the network components. The network layer
informs the transport layer of the status of potential and existing connections in
the network in terms of speed, reliability, and availability. The network layer is
typically implemented with routers, which connect different networks that use
the same transport protocol.

The data link layer manages the direct connections between components on a
network. This layer is divided into the logical link control (LLC) which is inde-
pendent of the network topology, and the media access control (MAC) which is
specific to the topology. In some networks the physical connections between
devices are not permanent, and it is the responsibility of the data link layer to
inform the physical layer when to make connections. This layer deals in units of
frames (single packets, or collections of packets that may be interleaved), which
contain addresses, data, and control information.

The physical layer ensures that raw data is transmitted from a source to a destina-
tion over the physical medium. It transmits and repeats signals across network
boundaries. The physical layer does not include the hardware itself, but includes
methods of accessing the hardware.

Topologies

There are three primary LAN organizations, as illustrated in Figure 8-33. The
bus topology is the simplest of the three. Components are connected to a bus
system by simply plugging them into the single cable that runs through the net-
work, or in the case of a wireless network, by simply emitting signals into a com-
mon medium. An advantage to this type of topology is that each component can
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Figure 8-33  (a) bus; (b) ring; and (c) star network topologies.

communicate directly with any other component on the bus, and that it is rela-
tively simple to add another component to the network. Control is distributed
among the components, and so there is no single network component that serves
as an intermediary, which reduces the initial cost of this type of network. Disad-
vantages of this topology include a limit on the length of the cable from the bus
to each network component (for a wireline network) and that a break in the
cable may be needed in order to add another component to the network, which
disrupts the rest of the network. An example of a bus-based network is Ethernet.

The ring topology uses a single cable, in which the ends are joined. Packets are
passed around the ring through each network component until they reach their
destinations. At the destinations, the packets are extracted from the network and
are not passed farther along the ring. If a packet makes its way back to the origi-
nating system, then the transmission is unsuccessful, and so the packet is stopped
and a new transmission can be attempted. An example of a ring-based LAN is
IBM'’s Token Ring.

In a star topology, each component is connected to a central hub which serves as
an intermediary for all communication over the network. In a simple configura-
tion, the hub receives data from one component and forwards it to all of the
other components, leaving it to the individual components to determine whether
or not they are the intended target. In a more sophisticated configuration, the
hub receives data and forwards it to a specific network component.

An advantage of a star topology is that most of the network service, troubleshoot-
ing, and wiring changes take place at the central hub. A disadvantage is that a
problem with the hub affects the entire network. Another disadvantage is that
geometrically, the star topology requires more cable than a bus or a ring because a
separate cable connects each network component to the hub. An example of a
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star-based network is ARCnet (although it is actually a bus-based network).

Data Transmission

Communication within a computer is synchronized by a common clock, and so
the transmission of a 1 or a 0 is signalled by a high or low voltage that is sampled
at a time determined by the clock. This scheme is simple, but does not work well
over longer distances, as in a LAN. The problem is that there is no timing refer-
ence to signal the start or stop of a bit. When there is a long string of 1's or 0,
timing with respect to the sending and receiving clocks may drift because the
clocks are not precisely synchronized. The distances over a LAN are too great to
maintain both a global clock and high speed at the same time. LANSs thus typi-
cally use the Manchester encoding scheme (see Section 8.1.1), in which timing is
embedded in the data.

Manchester encoding is applied at the lowest level of transmission. At the next
level, a data stream is decomposed into packets and frames that are transmitted
over the network, not necessarily in order. The data link layer is responsible for
decomposing a data stream into packets, forming packets into frames, and inject-
ing frames into the network. When receiving frames, the data link layer extracts
the packets and assembles them into a format that the higher level network layers
can use. The size of a data packet is commonly on the order of a kilobyte, and
requires a few microseconds for transmission at typical speeds and distances.

Ethernet is one of the most prevalent bus-based networks. Ethernet uses carrier
sense multiple access with collision detection (CSMA/CD) for transmission.
Under CSMA/CD, when a network component wants to transmit data, it first
listens for a carrier. If there is a carrier present on the line, which is placed there
by a transmitting device, then it transmits nothing and listens again after a ran-
dom waiting period. The random waiting period is important in order to avoid a
deadlock in which components that are trying to access the bus perpetually lis-
ten and wait in synchrony.

If there is no traffic on the line, then transmission can begin by sending a carrier
on the line as well as the data. The source also listens for collisions, in which two
or more components simultaneously transmit. A collision is detected by the pres-
ence of more than one carrier. Collisions can occur in a fully operational network
as a result of the finite time it takes for a signal to travel the length of the bus.
The propagation of signals on the bus is bounded by the speed of light over the
length of the bus, which can be 500 m in a generic Ethernet installation. When a
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collision occurs, the transmitting components wait for a random interval before
retransmitting.

Transmitted data moves in both directions over the bus. Every component sees
every packet of data, but only extracts those packets with corresponding destina-
tion addresses. After a packet is successfully delivered, the destination can gener-
ate an acknowledgment to the sender, typically at the transport layer. If the
sender does not receive an acknowledgment after a fixed period of time (which
must be greater than the round trip delay through the network), then it retrans-
mits the message.

Collisions should occur infrequently in practice, and so the overhead of recover-
ing from a collision is not very significant. A serious degradation in Ethernet per-
formance does not occur until traffic increases to about 35% of network capacity.

Bridges, Routers, and Gateways

As networks grow in size, they can be subdivided into smaller networks that are
interconnected. The smaller subnetworks operate almost entirely independently
of each other, and can use different protocols and topologies.

If the subnetworks all use the same topology and the same protocols, then it may
be the case that all that is needed to extend the network are repeaters. A repeater
amplifies the signals on the network, which become attenuated in proportion to
the distance traveled. The overall network is divided into subnetworks, in which
each subnetwork operates somewhat independently with respect to the others.
The subnetworks are not entirely independent because every subnetwork sees all
of the traffic that occurs on the other subnetworks. A network with simple
repeaters is not extensible to large sizes. Since noise is amplified as well as the sig-
nal, the noise will eventually dominate the signal if too many repeaters are used
in succession.

A bridge does more than simply amplify voltage levels. A bridge restores the
individual voltage levels to logical 1 or 0, which prevents noise from accumulat-
ing. Bridges have some level of intelligence, and can typically interpret the desti-
nation address of a packet and route it to the appropriate subnetwork. In this
way, network traffic can be reduced, since the alternative method would be to
blindly send each incoming packet to each subnetwork (as for a repeater based
network).
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Although bridges have some level of intelligence in that they sense the incoming
bits and make routing decisions based on destination addresses, they are unaware
of protocols. A router operates at a higher level, in the network layer. Routers
typically connect logically separate networks that use the same transport proto-
col.

A gateway translates packets up through the application layer of the OSI model
(layers 4 through 7). Gateways connect dissimilar networks by performing proto-
col conversions, message format conversions, and other high level functions.

In all computer architectures, and especially in situations involving communica-
tions between computers, there is a finite chance that the data is received in error,
due to noise in the communication channel. The data representations we have
considered up to this point make use of the binary symbols 1 and 0. In reality,
the binary symbols take on physical forms such as voltages or electric current.
The physical form is subject to noise that is introduced from the environment,
such as atmospheric phenomena, gamma rays, and power fluctuations, to name
just a few. The noise can cause errors, also known as faults, in which a 0 is turned
intoaloralisturnedintoaO.

Suppose that the ASCII character ‘b’ is transmitted from a sender to a receiver,
and during transmission, an error occurs, so that the least significant bit is
inverted. The correct bit pattern for ASCII ‘b’ is 1100010. The bit pattern that
the receiver sees is 1100011, which corresponds to the character ‘c.” There is no
way for the receiver to know that an error occurred simply by looking at the
received character. The problem is that all of the possible 2" ASCII bit patterns
represent valid characters, and if any of the bit patterns is transformed into
another through an error, then the resulting bit pattern appears to be valid.

It is possible for the sender to transmit additional “check bits” along with the
data bits. The receiver can examine these check bits and under certain conditions
not only detect errors, but correct them as well. Two methods of computing
these additional bits are described below. We start by introducing some prelimi-
nary information and definitions.

BIT ERROR RATE DEFINED
There are many different ways that errors can be introduced into a computer sys-
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tem, and those errors can take many different forms. For the moment, we will
assume that the probability that a given bit is received in error is independent of
the probability that other bits near it are received in error. In this case, we can
define the bit error rate (BER) as the probability that a given bit is erroneous.
Obviously this must be a very small number, and is usually less than 10712 errors
per bit examined for many networks. That means, loosely speaking, that as bits
are examined, only one in every 10%? bits will be erroneous.

Inside the computer system typical BER’s may run 10718 or less. As a rough esti-
mate, if the clock rate of the computer is 100 MHz, and 32 bits are manipulated
during each clock period, then the number of errors per second for that portion
of the computer will be 1018 x 100 x 108 x 32 or 3.2 x 10 errors per second,
approximately one erroneous bit once every 10 years.

On the other hand, if one is receiving a bit stream from a serial communications
line at, say, 1 million bits per second, and the BER is 10'10, then a the number of
errors per second will be 1 x 108 x 1019 or 10" errors per second, approxi-
mately 10 errors per day.

ERROR DETECTION AND CORRECTION

One of the simplest and oldest methods of error detection was used to detect
errors in transmitting and receiving characters in telegraphy. A parity bit, 1 or 0,
was added to each character to make the total number of 1's in the character even
or odd, as agreed upon by sender and receiver. In our example of transmitting the
ASCII character ‘b,” 1100010, assuming even parity, a 1 would be attached as a
parity bit to make the total number of 1’s even, resulting in the bit pattern
11000101 being transmitted. The receiver could then examine the bit pattern,
and if there was an even number of 1s, the receiver could assume that the charac-
ter was received without error. (This method fails if there is significant probabil-
ity of two or more bits being received in error. In this case, other methods must
be used, as discussed later in this section.) The intuition behind this approach is
explored below.

Hamming Codes

If additional bits are added to the data then it is possible to not only detect
errors, but to correct them as well. Some of the most popular error-correcting
codes are based on the work of Richard Hamming of Bell Telephone Laborato-
ries (now operated by Lucent Technologies).
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We can detect single-bit errors in the ASCII code by adding a redundant bit to
each codeword (character). The Hamming distance defines the logical distance
between two valid codewords, as measured by the number of digits that differ
between the codewords. If a single bit changes in an ASCII character, then the
resulting bit pattern represents a different ASCII character. The corresponding
Hamming distance for this code is 1. If we recode the ASCII table so that there is
a Hamming distance of 2 between valid codewords, then two bits must change
in order to convert one character into another. We can then detect a single-bit
error because the corrupted word will lie between valid codewords.

One way to recode ASCII for a Hamming distance of two is to assign a parity
bit, which takes on a value of 0 or 1 to make the total number of 1’s in a code-
word odd or even. If we use even parity, then the parity bit for the character ‘@’ is
1 since there are three 1's in the bit pattern for ‘a": 1100001 and assigning a parity
bit of 1 (to the left of the codeword here) makes the total number of 1s in the
recoded ‘@ even: 11100001. This is illustrated in Figure 8-34. Similarly, the par-

Bit position
P 6 5 4 3 2 1 0
1 1 1 0 0 0 0 1 a
1/l1 1 0o 0 0 1 o0 |b
0 1 1 0 0 0 1 1 c

o0l L o o O O o0 1 |A

l |
? 7-bit ASCII character code T
Even parity bit Character

Figure 8-34  Even parity bits are assigned to a few ASCII characters.

ity bit for ‘¢’ is O which results in the recoded bit pattern: 01100011. If we use
odd parity instead, then the parity bits take on the opposite values: 0 for ‘@’ and 1
for ‘c,” which results in the recoded bit patterns 01100001 and 11100011,
respectively.

The recoded ASCII table now has 28 = 256 entries, of which half of the entries
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(the ones with an odd number of 1’) represent invalid codewords. If an invalid
codeword is received, then the receiver knows that an error occurred and can
request a retransmission.

A retransmission may not always be practical, and for these cases it would be
helpful to both detect and correct an error. The use of a parity bit will detect an
error, but will not locate the position of an error. If the bit pattern 11100011 is
received in a system that uses even parity, then the presence of an error is known
because the parity of the received word is odd. There is not enough information
from the parity bit alone to determine if the original pattern was ‘@, ‘b’, or any of
five other characters in the ASCII table. In fact, the original character might even
be ‘¢’ if the parity bit itself is in error.

In order to construct an error correcting code that is capable of detecting and
correcting single-bit errors, we must add more redundancy than a single parity
bit provides to the ASCII code by further extending the number of bits in each
codeword. For instance, consider the bit pattern for ‘a’: 1100001. If we wish to
detect and correct a single bit error in any position of the word, then we need to
assign seven additional bit patterns to @’ in which exactly one bit changes in the
original ‘@ codeword: 0100001, 1000001, 1110001, 1101001, 1100101,
1100011, and 1100000. We can do the same for ‘b’ and the remaining charac-
ters, but we must construct the code in such a way that no bit pattern is common
to more than one ASCII character, otherwise we will have no means to unambig-
uously determine the original bit pattern.

A problem with using redundancy in this way is that we assign eight bit patterns
to every character: one for the original bit pattern, and seven for the neighboring
error patterns. Since there are 27 characters in the ASCII code, and since we need
23 bit patterns for every character, then we can only recode 27/2° = 2% characters
if we use only the original seven bits in the representation.

In order to recode all of the characters, we must add additional redundant bits
(also referred to as check bits) to the codewords. Let us now determine how
many bits we need. If we start with a k-bit word that we would like to recode,
and we use r check bits, then the following relationship must hold:

P x(k+r+1)<2  =k+r+e1<2 (8.1)

The reasoning behind this relationship is that for each of the 2k original words,
there are k bit patterns in which a single bit is corrupted in the original word,
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plus r bit patterns in which one of the check bits is in error, plus the original
uncorrupted bit pattern. Thus, our error correcting code will have a total of 2K x
(k + r + 1) bit patterns. In order to support all of these bit patterns, there must be
enough bit patterns generated by k + r bits, thus 2% must be greater than or
equal to the number of bit patterns in the error correcting code. There are k = 7
bits in the ASCII code, and so we must now solve for r. If we try a few successive
values, starting at 1, we find that r = 4 is the smallest value that satisfies relation
8.1. The resulting codewords will thus have 7 + 4 = 11 bits.

We now consider how to recode the ASCII table into the 11-bit code. Our goal
is to assign the redundant bits to the original words in such a way that any sin-
gle-bit error can be identified. One way to make the assignment is shown in Fig-
ure 8-35. Each of the 11 bits in the recoded word are assigned a position in the

Check bits | Bit position
cgc4acaca checked
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Figure 8-35  Check bits for a single error correcting ASCII code.

table indexed from 1 to 11, and the 4-bit binary representations of the integers 1
through 11 are shown next to each index. With this assignment, reading across
each of the 11 rows of four check bits, there is a unique positioning of the 1 bits
in each row, and so no two rows are the same. For example, the top row has a sin-
gle 1 in position C1, but no other row has only a single 1 in position C1 (other
rows have a 1 in position C1, but they also have 1's in the other check bit posi-
tions.)

Now, reading down each of the four check bit columns, the positions of the 1
bits tell us which bits, listed in the rightmost ‘Bit position checked’ column, are
included in a group that must form even parity. For example, check bit C8 covers
a group of 4 bits in positions 8, 9, 10, and 11, that collectively must form even
parity. If this property is satisfied when the 11-bit word is transmitted, but an
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error in transmission causes this group of bits to have odd parity at the receiver,
then the receiver will know that there must be an error in either position 8, 9, 10,
or 11. The exact position can be determined by observing the remaining check
bits, as we will see.

In more detail, each bit in the 11-bit encoded word, which includes the check
bits, is assigned to a unique combination of the four check bits C1, C2, C4, and
C8. The combinations are computed as the binary representation of the position
of the bit being checked, starting at position 1. C1 is thus in bit position 1, C2 is
in position 2, C4 is in position 4, etc. The check bits can appear anywhere in the
word, but normally appear in positions that correspond to powers of 2 in order
to simplify the process of locating an error. This particular code is known as a
single error correcting (SEC) code.

Since the positions of the 1’s in each of the check bit combinations is unique, we
can locate an error by simply observing which of the check bits are in error. Con-
sider the format shown in Figure 8-36 for the ASCII character ‘@’. The values of

ASCII ‘a = 1100001

11000000110
Bitpostion—> 11 10 9 8 7 6 5 4 3 2 1
Check bits —> c8 c4 c2 C1

Figure 8-36 Format for a single error correcting ASCII code.

the check bits are determined according to the table shown in Figure 8-35.
Check bit C1 = 0 creates even parity for the bit group {1, 3, 5, 7, 9, 11}. The
members in this group are taken from the positions that have 1’ in the C1 col-
umn in Figure 8-35. Check bit C2 =1 creates even parity for the bit group {2, 3,
6, 7, 10, 11}. Similarly, check bit C4 = 0 creates even parity for the bit group {4,
5, 6, 7}. Finally, check bit C8 = 0 creates even parity for the bit group {8, 9, 10,
11}.

As an alternative to looking up members of a parity group in a table, in general,
bit n of the coded word is checked by those check bits in positions by, b, ..., b;
such that by + b, + ... + b =n. For example, bit 7 is checked by bits in positions
1,2,and 4 because 1 +2+4=7.

Now suppose that a receiver sees the bit pattern 10010111001. Assuming that
the SEC code for ASCII characters described above is used, what character was
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sent? We start by computing the parity for each of the check bits as shown in Fig-
ure 8-37. As shown in the figure, check bits C1 and C4 have odd parity. In order

L ocation of error

Bitposton—> 11 10 9 8 7 6 5 4 3 2 1

Check bits —>» C8 C4 C2 C1
Parity
Clchecks: 1,3,5,7,9,11 odd
C2checks: 2,3,6,7,10,11 even
C4 checks: 4,5,6,7 odd
C8checks: 8,9, 10, 11 even

Figure 8-37  Parity computation for an ASCII character in an SEC code.

to locate the error, we simply add up the positions of the odd check bits. The
error then, is in position 1 + 4 = 5. The word that was sent is 10010101001. If
we strip away the check bits, then we end up with the bit pattern 2000100 which
corresponds to the ASCII character ‘D’.

One way to think about an SEC code is that valid codewords are spaced far
enough apart so that a single error places a corrupted codeword closer to one par-
ticular valid codeword than to any other valid codeword. For example, consider
an SEC code for a set of just two symbols: {000, 111}. The Hamming distance
relationships for all three-bit patterns are shown for this code in the cube in Fig-
ure 8-38. The cube has correspondingly higher dimensions for larger word sizes,

Error Valid
codewords codeword

\‘ N Y
010

011f  Three changed bits between
) \ W valid codewords resultsin a
vaid L=< _Hamming distance of 3.
codewg:l 100 101
= Eror
000 00l <— ¢odewords

Figure 8-38 Hamming distance relationships among three-bit codewords. Valid codewords are 000
and 111. The remaining codewords represent errors.

resulting in what is called a hypercube. The two valid codewords are shown on
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opposing vertices. Any single bit error will locate an invalid codeword at a differ-
ent vertex on the cube. Every error codeword has a closest valid codeword, which
makes single error correction possible.

SECDED Encoding

If we now consider the case in which there are two errors, then we can see that
the SEC code works for double error detection (DED), but not for double
error correction (DEC). This is sometimes referred to as SECDED encoding.
Since valid codewords are spaced at a Hamming distance of 3, two errors will
locate an error codeword on the cube, and thus two errors can be detected. The
original codeword cannot be determined unambiguously, however, since vertices
that correspond to two errors from one codeword overlap vertices that corre-
spond to a single error from another codeword. Thus, every SEC code is also a
DED code, but every DED code is not necessarily a DEC code. In order to cor-
rect two errors, a Hamming distance of five must be maintained. In general, a
Hamming distance of p + 1 must be maintained in order to detect p errors, and a
Hamming distance of 2p + 1 must be maintained to correct p errors.

VERTICAL REDUNDANCY CHECKING

The SEC code described in the previous section is used for detecting and correct-
ing single bit errors in individual data words. Redundant bits are added to each
data word, and each resulting codeword is treated independently. The recoding
scheme is sometimes referred to as horizontal or longitudinal redundancy
checking (LRC) because the width of the codeword is extended for the redun-
dant bits.

An alternative approach is to use a vertical redundancy checking (VRC) code,
in which a checksum word is added at the end of a group of words that are trans-
mitted. In this case, parity is computed on a column by column basis, forming a
checksum word that is appended to the message. The checksum word is com-
puted and transmitted by the sender, and is recomputed and compared to the
transmitted checksum word by the receiver. If an error is detected, then the
receiver must request a retransmission since there is not enough redundancy to
identify the position of an error. The VRC and LRC codes can be combined to
improve error checking, as shown for the ASCII characters ‘A’ through ‘H’ in
Figure 8-39.

In some situations, errors are bursty, and may corrupt several contiguous bits
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P Code Character
0|1000001 A
0|1000010 B
1/11000011 C
0|1000100 D
111000101 E
111000110 F
0|1000111 G
0/1001000 H
1/0001000 | Checksum

Figure 8-39 Combined LRC and VRC checking. Checksum bits form even parity for each column.

both horizontally and vertically. A more powerful scheme such as cyclic redun-
dancy checking (CRC) is more appropriate for this situation, which is a varia-
tion of VRC checking in which the bits are grouped in a special way, as described
in the next section.

CYCLIC REDUNDANCY CHECKING

Cyclic redundancy checking (CRC) is a more powerful error detection and cor-
rection scheme that operates in the presence of burst errors, which each begin
and end with a bit error, with zero or more intervening corrupted bits. The two
endpoint corrupted bits are included in the burst error. If the length of a burst
error is B, then there must be B or more uncorrupted bits between burst errors.

CRCs use polynomial codes, in which a frame to be transmitted is divided by a
polynomial, and the remainder is appended to the frame as a frame check
sequence (FCS), commonly known as the CRC digits. The frame is transmitted
(or stored) along with the CRC digits. After receiving the frame, the receiver
then goes through the same computation, using the same polynomial, and if the
remainders agree then there are no detectable errors. There can be undetectable
errors, and the goal in creating a CRC code is to select a polynomial that covers
the statistically likely errors for a given fault model.

The basic approach starts with a k-bit message to be transmitted, M(x), which is
appended with n 0s in which n is the degree of the generator polynomial, G(x),
with k > n. This extended form of M(x) is divided by G(x) using modulo 2 arith-
metic (in which carries and borrows are discarded), and then the remainder, R(x),
which is no more than n bits wide, forms the CRC digits for M(x).



CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 347

As an example, consider a frame to be transmitted:
M(x)=1101011011

and a generator polynomial G(x) = x* + x + 1. The degree of G(X) (the highest
exponent) is 4, and so we append 4 zeros to M(x) to form the dividend of the
computation.

The divisor is 10011, which corresponds to the coefficients in G(x) written as:
G)=1xx*+0xx3+0xx>+1xxt+1xx0,

Notice that G(x) has a degree of n = 4, and that there are n + 1 = 5 coefficients.
The CRC digits are then computed as shown in Figure 8-40. The divisor

M(x) ﬁ Quotient is discarded
1100001010 for the calculation of

ElOOli)|(1101011013@000}\theoriginal CRC.
G4, of D10011¢

degreen=4 10011 n= 4 zeros
010011

Bitwise exclusive OR 10110
(XOR), isthe same as 010011
modulo-2 addition and —_—VvY
modulo-2 subtraction. 010100

U1 0 01 l

R(X) isthe

CRC for M(x)

TransmlttedframeT(x)—11010110111110
11 |

M(X) R(x)

Figure 8-40 Calculation of the CRC digits.

(10011) is divided into the dividend, but the magnitudes of the divisor and divi-
dend do not play a role in determining whether the divisor “goes into” the divi-
dend at the location of a particular digit. All that matters is that the number of
bits in the divisor (which has no leading zeros) matches the same number of bits
in the dividend (which also must not have leading zeros at the position being
checked.) Note that there are no borrows in modulo-2 subtraction, and that a
bit-by-bit exclusive-OR (XOR) operation between the divisor and the dividend
achieves the same result.
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Now suppose that the transmitted frame T(x) = M(x) + R(x) gets corrupted dur-
ing transmission. The receiver needs to detect that this has happened. The
receiver divides the received frame by G(x), and all burst errors that do not
include G(x) as a factor will be caught because there will be a nonzero remainder
for these cases. That is, as long as the 1’s in 10011 do not coincide with the posi-
tions of errors in the received frame, all errors will be caught. In general, a poly-
nomial code of degree n will catch all burst errors of length < n.

Common polynomials that give good error coverage include:
CRC-16 =x1® +x1® +x% +1
CRC-CCITT=x1®+x2+x°+1

CRC'32=X32+X26+X23+X16+X12+X11+X10+X8+X7+X5+X4+
X2+ X +1

A deeper analysis of CRC codes is beyond the scope of this book, and the reader
is referred to (Hamming, 1986) for further details.

Bl B EXAMPLE: ERROR CORRECTION

Consider how many check bits are needed for a double-error correcting ASCII

code. There are k = 7 bits for each ASCII character, and we need to add r check

bits to each codeword. For each of the 25 ASCII characters there are k + r possible
. (k+r)(k+r-1) . .

one-bit error patterns, there are s possible two-bit error pat-

terns, and there is one bit pattern for the uncorrupted codeword. There are 2F*"

possible bit patterns, and so the following relation must hold:

2k x l(k+r) + 7“(”)('(2”_1) + 1J < ok+r

| S S BN

Number of Number of  Number of Uncorrupted  Number of
original one-hit two-bit codeword possible bit
codewords errors errors patterns

Simplifying, using k = 7, yields: 1 + 157 + 58 < 2r+1 for which r = 7 is the smallest
value that satisfies the relation.
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Since a Hamming distance of 2p + 1 must be maintained to correct p errors, the
Hamming distance for this DEC code must be at least 2 x 2 + 1 = 5. If we use the
same encoding for error detection instead, then we have p + 1 =5, and since a
Hamming distance of p + 1 must be maintained to detect p errors, then p = 4
errors can be detected. =

EXAMPLE: TRANSFER TIME FOR A HARD DISK

Consider calculating the transfer time of a hard magnetic disk. For this example,
assume that a disk rotates once every 16 ms. The seek time to move the head
between adjacent tracks is 2 ms. There are 32 sectors per track that are stored in
linear order (non-interleaved), from sector O to sector 31. The head sees the sec-
tors in that order.

Assume the read/write head is positioned at the start of sector 1 on track 12.
There is a memory buffer that is large enough to hold an entire track. Data is
transferred between disk locations by reading the source data into memory, posi-
tioning the read/write head over the destination location, and writing the data to
the destination.

How long will it take to transfer sector 1 on track 12 to sector 1 on track 13?
How long will it take to transfer all of the sectors of track 12 to the correspond-
ing sectors on track 13? Note that sectors do not have to be written in the same
order they are read.

Solution;

The time to transfer a sector from one track to the next can be decomposed into
its parts: the sector read time, the head movement time, the rotational delay, and
the sector write time.

The time to read or write a sector is simply the time it takes for the sector to pass
under the head, which is (16 ms/track) x (1/32 tracks/sector) = .5 ms/sector. For
this example, the head movement time is only 2 ms because the head moves
between adjacent tracks. After reading sector 1 on track 12, which takes .5 ms,
an additional 15.5 ms of rotational delay is needed for the head to line up with
sector 1 again. The head movement time of 2 ms overlaps the 15.5 ms of rota-
tional delay, and so only the greater of the two times (15.5 ms) is used.
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We sum the individual times and obtain; .5 ms + 15.5 ms + .5 ms = 16.5 ms to
transfer sector 1 on track 12 to sector 1 on track 13.

The time to transfer all of track 12 to track 13 is computed in a similar manner.
The memory buffer can hold an entire track, and so the time to read or write an
entire track is simply the rotational delay for a track, which is 16 ms. The head
movement time is 2 ms, which is also the time for four sectors to pass under the
head. Thus, after reading a track and moving the head, the head is now on track
13, at four sectors past the initial sector that was read on track 12.

Sectors can be written in a different order than they are read. Track 13 can thus
be written with a four sector offset with respect to how track 12 was read. The
time to write track 13 is 16 ms, and the time for the entire transfer then is: 16 ms
+2 ms + 16 ms = 34 ms. Notice that the rotational delay is zero for this example
because the head lands at the beginning of the first sector to be written. =

The Intel Pentium processor family is Intel’s current state-of-the art implementa-
tion of their venerable x86 family, which began with the Intel 8086, released in
1978. The Pentium is itself a processor family, with versions that emphasize high
speed, multiprocessor environments, graphics, low power, etc. In this section we
examine the common features that underlie the Pentium system bus.

System clock, bus clock, and bus speeds

Interestingly, the system clock speed is set as a multiple of the bus clock. The
value of the multiple is set by the processor whenever it is reset, according to the
values on several of its pins. The possible values of the multiple vary across family
members. For example, the Pentium Pro, a family member adapted for multiple
CPU applications, can have multipliers ranging from 2 to 3-1/2. We mention
again here that the reason for clocking the system bus at a slower rate than the
CPU is that CPU operations can take place faster than memory access opera-
tions. A common bus clock frequency in Pentium systems is 66 MHz.

Address, data, memory, and 1/O capabilities

The system bus effectively has 32 address lines, and can thus address up to 4 GB
of main memory. Its data bus is 64 bits wide; thus the processor is capable of
transferring an 8-byte quadword in one bus cycle. (Intel x86 words are 16-bits
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long.) We say “effectively” because in fact the Pentium processor decodes the
least significant three address lines, A,-Ag, into eight “byte enable” lines,
BEO#-BE7#, prior to placing them on the system bus. The values on these eight
lines specify the byte, word, double word, or quad word that is to be transferred
from the base address specified by Azq-As.

Data words have soft-alignment

Data values have so-called soft alignment, meaning that words, double words,
and quad words should be aligned on even word, double word, and quad word
boundaries for maximum efficiency, but the processor can tolerate misaligned
data items. The penalty for accessing misaligned words may be two bus cycles,
which are required to access both halves of the datum.?

As a bow to the small address spaces of early family members, all Intel processors
have separate address spaces for memory and 1/O accesses. The address space to
be selected is specified by the M/IO# bus line. A high value on this line selects
the 2 GB memory address space, and low specifies the I/O address space. Sepa-
rate opcodes, IN and OUT, are used to access this space. It is the responsibility of
all devices on the bus to sample the M/1O# line at the beginning of each bus
cycle to determine the address space to which the bus cycle is referring—memory
or 1/O. Figure 8-41shows these address spaces graphically. I/O addresses in the
x86 family are limited to 16 bits, allowing up to 64K 1/0 locations. Figure 8-41
shows the two address spaces.

Bus cycles in the Pentium family

The Pentium processor has a total of 18 different bus cycles, to serve different
needs. These include the standard memory read and write bus cycles, the bus
hold cycle, used to allow other devices to become the bus master, an interrupt
acknowledge cycle, various “burst” cache access cycles, and a number of other
special purpose bus cycles. In this Case Study we examine the read and write bus
cycles, the “burst read” cycle, in which a burst of data can be transferred, and the
bus hold/hold acknowledge cycle, which is used by devices that wish to become

1. The “#” symbol is Intel’s notation for a bus line that is active low.

2. Many systems require so-called hard alignment. Misaligned words are not allowed, and
their detection causes a processor exception to be raised.
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Address
FFFFFFFF
Memory
Space
Address
FFFF /O
00000000 0000 Space

Figure 8-41 Intel memory and 1/O address spaces.

the bus master.

Memory read and write bus cycles

The “standard” read and write cycles are shown in Figure 8-42. By convention,
| T1 | T2 ‘ T T2 | T2 | T | T1
| | | | | |

apbr | X Tvaid | X invdiid [vaiid T X inbalid X
| | | |
| | |

|
CACHE#H / \ |/ \
WRE |\

\
\
|
\ \
\
\
|
|

\{ROM CPU

READ CYCLE IDLE WRITE CYCLE  IDLE
Figure 8-42 The standard Intel Pentium Read and Write bus cycles.

the states of the Intel bus are referred to as “T states,” where each T state is one
clock cycle. There are three T states shown in the figure, T1, T2, and Ti, where Ti
is the “idle” state, the state that occurs when the bus is not engaged in any spe-
cific activity, and when no requests to use the bus are pending. Recall that a “#”
following a signal name indicates that a signal is active low, in keeping with Intel
conventions.
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Both read and write cycles require a minimum of two bus clocks, T1 and T2:

» The CPU signals the start of all new bus cycles by asserting the Address Sta-
tus signal, ADS#. This signal both defines the start of a new bus cycle and
signals to memory that a valid address is available on the address bus,
ADDR. Note the transition of ADDR from invalid to valid as ADS# is as-
serted.

» The de-assertion of the cache load signal, CACHE#, indicates that the cycle
will be a composed of a single read or write, as opposed to a burst read or
write, covered later in this section.

 During a read cycle the CPU asserts read, W/R#, simultaneously with the
assertion of ADS#. This signals the memory module that it should latch the
address and read a value at that address.

« Upon a read, the memory module asserts the Burst Ready, BRDY#, signal
as it places the data, DATA, on the bus, indicating that there is valid data
on the data pins. The CPU uses BRDY# as a signal to latch the data values.

 Since CACHE# is deasserted, the assertion of a single BRDY# signifies the
end of the bus cycle.

* In the write cycle, the memory module asserts BRDY# when it is ready to
accept the data placed on the bus by the CPU. Thus BRDY# acts as a hand-
shake between memory and the CPU.

« If memory is too slow to accept or drive data within the limits of two clock
cycles, it can insert “wait” states by not asserting BRDY# until it is ready to
respond.

The burst Read bus cycle

Because of the critical need to supply the CPU with instructions and data from
memory that is inherently slower than the CPU, Intel designed the burst read
and write cycles. These cycles read and write four eight-byte quad words in a
burst, from consecutive addresses. Figure 8-43 shows the Pentium burst read
cycle.

The burst read cycle is initiated by the processor placing an address on the
address lines and asserting ADS# as before, but now, by asserting the CACHE#
line the processor signals the beginning of a burst read cycle. In response the
memory asserts BRDY# and places a sequence of four 8-byte quad words on the
data bus, one quad word per clock, keeping BRDY# asserted until the entire
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| T1 | T2 | T2 | T2 | T2 | Ti
I I |
ADDR | X 1 valid | X Invalid

ADS# \ | /

I
CACHE# \ |
| I
WIR# | Read
I I
BRDY# | I\
I I
|
I

DATA —

TEeT

READ READ READ READ
Figure 8-43  The Intel Pentium burst read bus cycle.

transfer is complete.

There is an analogous cycle for burst writes. There is also a mechanism for cop-
ing with slower memory by slowing the burst transfer rate from one per clock to
one per two clocks.

Bus hold for request by bus master

There are two bus signals for use by devices requesting to become bus master:
hold (HOLD) and hold acknowledge (HLDA). Figure 8-44 shows how the
transactions work. The figure assumes that the processor is in the midst of a read
cycle when the HOLD request signal arrives. The processor completes the cur-
rent (read) cycle, and inserts two idle cycles, Ti. During the falling edge of the
second Ti cycle the processor floats all of its lines and asserts HLDA. It keeps
HLDA asserted for two clocks. At the end of the second clock cycle the device
asserting HLDA “owns” the bus, and it may begin a new bus operation at the fol-
lowing cycle, as shown at the far right end of the figure. In systems of any com-
plexity there will be a separate bus controller chip to mediate among the several
devices that may wish to become the bus master.
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| T1 | T2 | Ti | i | i | i | T1
I I | I I I I
ADDR | X Uvalid | | | | |
I | | I I I I
| I i I I I I
ADS# |
cacHed /| | ' ' ' '
I | I I I I
WR# | | Read | | | I I
I I | I I I I
I I | I I I I
I I I I I I
DATA TO CPU
I I | I I I I
| I I I I I I
HOLD | [ sus REQ | | | |
I I | I I | I
HLDA | I I / | I I |
READ CYCLE | I I I INEW BUS
: : MASTER

Figure 8-44  The Intel Pentium Hold-Hold Acknowledge bus cycle.

Data transfer rates

Let us compute the data transfer rates for the read and burst read bus cycles. In
the first case, 8 bytes are transferred in two clock cycles. If the bus clock speed is
66 MHz, this is a maximum transfer rate of

§><66><106

or 264 million bytes per second. In burst mode that rate increases to four 8-byte
bursts in five clock cycles, for a transfer rate of

32 6
B X 66 x 10

or 422 million bytes per second. (Intel literature uses 4 cycles rather than 5 as the
denominator, thus arriving at a burst rate of 528 million bytes per second. Take
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your pick.)

At the 422 million byte rate, with a bus clock multiplier of 3-1/2, the data trans-
fer rate to the CPU is
422 x 10°
3.5 x 66 x 10°

or about 2 bytes per clock cycle. Thus under optimum, or ideal conditions, the
CPU is probably just barely kept supplied with bytes. In the event of a branch
instruction or other interruption in memory activity, the CPU will become
starved for instructions and data.

The Intel Pentium is typical of modern processors. It has a number of specialized
bus cycles that support multiprocessors, cache memory transfers, and other kinds
of special situations. Refer to the Intel literature (see below) for more details.

®m SUMMARY

Mass storage devices come in a variety of forms. Examples of mass storage devices
are hard disks and magnetic tape units. Optical storage provides greater density
per unit area than magnetic storage, but is more expensive and does not offer the
same degree of user writability. An example of an optical storage device is a CD
ROM.

There is a wide range of other input/output devices. The few that we studied in
this chapter that are not mass storage devices can be grouped into input devices
and output devices. Examples of input devices are keyboards, bit pads, mice,
trackballs, lightpens, touch screens, and joysticks. Examples of output devices are
laser printers and video displays.

Input, output, and communication involve the transfer of information between
transmitters and receivers. The transmitters, receivers, and methods of communi-
cation are often mismatched in terms of speed and in how information is repre-
sented, and so an important consideration is how to match input and output
devices with a system using a particular method of communication.

A bus provides a fixed bandwidth that is shared among a number of devices.
When a bus is used within a computer, communication is handled via pro-
grammed 1/O, interrupt driven 1/0, or DMA. In complex systems, a higher level
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m FURTHER READING

(Hamacher et al., 1990) provides explanations of communication devices and a
number of peripherals such as an alphanumeric CRT controller. (Tanenbaum,
1999) and (Stallings, 1996) also give readable explanations of peripheral devices.
The material on synchronous and asynchronous busses, and bus arbitration, is
influenced by a detailed presentation in (Tanenbaum, 1999). (Stallings, 1996)
covers 1/0O channels.

(Needleman, 1990) and (Schnaidt, 1990) give a thorough treatment of local area
networks according to the OSI model, and (Tanenbaum, 1996) is a good refer-
ence on communications in general.

(Tanenbaum, 1999) and (Stallings, 1993) give readable explanations of Ham-
ming encoding. (Hamming, 1986) and (Peterson and Weldon, 1972) give more
detailed treatments of error-correcting codes.
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Intel data sheets and other literature, including the Pentium, Pentium II, and
Pentium Pro hardware and programmer’s manuals can be ordered from Intel Lit-
erature Sales, PO Box 7641, Mt. Prospect IL 60056-7641, or, in the U. S. and
Canada, by calling (800) 548-4725.
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® PROBLEMS
Show the Manchester encoding of the bit sequence: 10011101.

A disk that has 16 sectors per track uses an interleave factor of 1:4. What
is the smallest number of revolutions of the disk required to read all of the sec-

tors of a track in sequence.

A hard magnetic disk has two surfaces. The storage area on each surface
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has an inner radius of 1 cm and an outer radius of 5 cm. Each track holds the
same number of bits, even though each track differs in size from every other.
The maximum storage density of the media is 10,000 bits/cm. The spacing
between corresponding points on adjacent tracks is .1 mm, which includes the
inter-track gap. Assume that the inter-sector gaps are negligible, and that a
track exists on each edge of the storage area.

(@) What is the maximum number of bits that can be stored on the disk?

(b) What is the data transfer rate from the disk to the head in bits per second
at a rotational speed of 3600 RPM?

A disk has 128 tracks of 32 sectors each, on each surface of eight platters.
The disk spins at 3600 rpm, and takes 15 ms to move between adjacent
tracks. What is the longest time needed to read an arbitrary sector located any-
where on the disk?

A 300 Mbyte (300 x 220 bytes) disk has 815 cylinders, with 19 heads, a
track-to-track speed of 7.5 m/s (that is, 7.5 meters per second), and a rotation
rate of 3600 RPM. The fact that there are 19 heads means that there are 10
platters, and only 19 surfaces are used for storing data. Each sector holds the
same amount of data, and each track has the same number of sectors. The
transfer time between the disk and the CPU is 300 Kbytes/sec. The
track-to-track spacing is .25 mm.

(@) Compute the time to read a track (not the time to transmit the track to a
host). Assume that interleaving is not used.

(b) What is the minimum time required to read the entire disk pack to a
CPU, given the best of all possible circumstances? Assume that the head of the
first surface to be read is positioned at the beginning of the first sector of the
first track, and that an entire cylinder is read before the arm is moved. Also
assume that the disk unit can buffer an entire cylinder, but no more. During
operation, the disk unit first fills its buffer, then it empties it to the CPU, and
only then does it read more of the disk.

A fixed head disk has one head per track. The heads do not move, and
thus, there is no head movement component in calculating the access time.
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For this problem, calculate the time that it takes to copy one surface to
another surface. This is an internal operation to the disk, and does not involve
any communication with the host. There are 1000 cylinders, each track holds
10 sectors, and the rotation rate of the disk is 3000 RPM. The sectors all line
up with each other. That is, within a cylinder, sector 0 on each track lines up
with sector O on every other track, and within a surface, sector 0 in each track
begins on the same line drawn from the center of the surface to the edge.

An internal buffer holds a single sector. When a sector is read from one track,
it is held in the buffer until it is written onto another track. Only then can
another sector be read. It is not possible to simultaneously read and write the
buffer, and the buffer must be entirely loaded or entirely emptied — partial
reads or writes are not allowed. Calculate the minimum time required to copy
one surface to another, given the best starting conditions. The surfaces must
be direct images of each other. That is, sector i in the source surface must be
directly above or below sector i in the destination surface.

Compute the storage capacity of a 6250 byte per inch (BPI) tape that is
600 ft long and has a record size of 2048 bytes. The size of an inter-record gap
is.5in.

A bit mapped display is 1024 pixels wide by 1024 pixels high. The refresh
rate is 60 Hz, which means that every pixel is rewritten to the screen 60 times
a second, but only one pixel is written at any time. What is the maximum
time allowed to write a single pixel?

How many bits need to be stored in the LUT in Figure 8-17? If the LUT
is removed, and the RAM is changed to provide the 24-bit R, G, and B out-
put directly, how many additional bits need to be stored in the RAM? Assume
that the initial size of the RAM is 210 x 29 = 219 words x 8 bits/word.

The MCB as presented in Section 8.2.1 keeps track of every sector on the
disk. An alternative organization, which significantly reduces the size of the
MCB, is to store blocks in chains. The idea is to store only the first block of a
file in the MCB, and then store a pointer to the succeeding block at the end of
the first block. Each succeeding block is linked in a similar manner.

(@) How does this approach affect the time to access the middle of a file?
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(b) After a system crash, would a disk recovery be easier if only the first sector
of a file is stored in the MCB, and the remaining list of sectors is stored in a
header at the beginning of each file? How does this approach affect storage?

You are now the administrator for a computer system that is maintained
by Mega Equipment Corporation (MEC). As part of routine maintenance,
MEC realigns the heads on one of the disks, and now the disk cannot be read
or written without producing errors. What went wrong? Would this happen
with or without the use of a timing track?

Why must the CPU ensure that interrupts are disabled before handing
control over to the ISR?

What is the Hamming distance for the ASCII SEC code discussed in Sec-
tion 8.5.2?

Construct the SEC code for the ASCII character ‘Q’ using even parity.
For parts (a) through (d) below, use a SEC code with even parity.
a) How many check bits should be added to encode a six-bit word?
b) Construct the SEC code for the six-bit word: 1 0 1 1 0 0. When construct-
ing the code, number the bits from right to left starting with 1 as for the

method described in Section 8.5.2.

c) A receiver sees a two-bit SEC encoded word that looks like this: 1 11 0 0.
What is the initial two-bit pattern?

d) The 12-bitword: 10111001100 1 complete with an SEC code (even
parity) is received. What 12-bit word was actually sent?

How many check bits are needed for a SEC code for an initial word size of
1024?

Construct a checksum word for EBCDIC characters *V’ through ‘Z’ using
vertical redundancy checking with even parity. DO NOT use longitudinal
redundancy checking. Show your work.
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Compare the number of bits used for parity in the SEC code with the
simple parity VRC code, for 1024 eight-bit characters:

a) Compute the number of check bits generated using SEC only (horizon-
tally).

b) Compute the number of checksum bits using VRC only.

The SEC code discussed in Section 8.5.2 can be turned into a double
error detecting/SEC (DED/SEC) code by adding one more bit that creates
even parity over the SEC code (which includes the parity bit being added.)
Explain how double error detection works while also maintaining single error
correction with this approach.

Compute the CRC for a message to be transmitted M(x) = 101100110
and a generator polynomial G(x) = x3 + x2 + 1.

What is the longest burst error that CRC-32 is sure to catch?



