

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

157

In the last chapter the assembly language was presented as being functionally
equivalent to machine language, but the translation process from assembly code
to machine code was not covered. Likewise, linking and loading of assembled
programs was mentioned, but the processes were not detailed. In this chapter the
processes of assembly, linking, and loading are covered in detail. Several features
commonly found in assemblers are also covered.

5.1 The Assembly Process

The process of translating an assembly language program into a machine lan-
guage program is referred to as the

assembly process

. The assembly process is
straightforward and rather simple, since there is an exact 1-to-1 mapping of
assembly language statements to their machine language counterparts. This is in
opposition to compilation, for example, in which a given high-level language
statement may be translated into any number of computationally equivalent
machine language statements.

While assembly is a straightforward process, it is tedious and quite error-prone if
done by hand. In fact, the assembler was one of the first software tools developed
after the invention of the digital electronic computer. All commercial assemblers
provide at least the following capabilities:

• Allow the programmer to specify the run-time location of data values and
programs.

• Provide a means for the programmer to initialize data values in memory
prior to program execution.

• Provide assembly-language mnemonics for all machine instructions and ad-

WORKING WITH ASSEMBLY
LANGUAGE

 5

158

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

dressing modes, and translate valid assembly language statements into their
equivalent machine language binary values.

• Permit the use of symbolic labels to represent addresses and constants.

• Provide a means for the programmer to specify the starting address of the
program, if there is one.

• Provide a degree of assemble-time arithmetic.

• Include a mechanism that allows variables to be defined in one assembly
language program and used in another, separately assembled program.

• Provide for the expansion of

macro routines

, that is, routines that can be
defined once, and then instantiated as many times as needed.

We shall illustrate how the assembly process proceeds by using ARC assembly
and machine language to “hand assemble” a simple ARC assembly program sim-
ilar to Figure 4-13, reproduced below for convenience as Figure 5-1. In assem-

bling this program we use the ARC encoding formats shown in Figure 4-10,
reproduced here as Figure 5-2. The figure shows the encoding of ARC machine
language. That is, it specifies the target binary machine language of the ARC
computer that the assembler must generate from the assembly language text.

Assembly and two pass assemblers

Most assemblers pass over the assembly language text twice, and are referred to as

! This program adds two numbers

.org 2048
ld [x], %r1 ! Load x into %r1
ld [y], %r2 ! Load y into %r2
addcc %r1, %r2, %r3 ! %r3 ← %r1 + %r2

jmpl %r15 + 4, %r0 ! Return
x: 15
y: 9

.end

.begin

main:

z: 0

st %r3, [z] ! Store %r3 into z

Figure 5-1 A simple ARC program that adds two numbers

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

159

two-pass assemblers. The first pass is dedicated to determining the addresses of
all data items and machine instructions, and selecting which machine instruction
shoud be produced for each assembly language instruction. During this pass the
assembler also performs any assembly-time arithmetic operations, and inserts all
labels and constant values into a table, referred to as the

symbol table

. The pri-
mary reason for requiring a second pass is to allow symbols to be used in the pro-
gram before they are defined, which is known as

forward referencing

. Thus the
assembler may not know the value of a symbol at the time when it is first used.
After the first pass, however, the assembler will have identified and entered all
symbols into its symbol table, and, during a second pass it “fixes up” the machine
language by inserting the values of unknown symbols.

Let us now assemble the program shown in Figure 5-1 into machine code. Using
the Memory format shown in Figure 5-2, we find that the

op

 field for the first
executable instruction (

ld

) is

11

. The destination of an

ld

 instruction always
goes in the

rd

 field, which is

00001

 for

%r1

 in this case. The

op3

 field follows

op3 (op=10)

010000
010001
010010
010110
100110
111000

addcc
andcc
orcc
orncc
srl
jmpl

0001
0101
0110
0111
1000

cond

be
bcs
bneg
bvs
ba

branch

010
100

op2

branch
sethi

Inst.

00
01
10
11

op

SETHI/Branch
CALL
Arithmetic
Memory

Format

000000
000100

ld
st

op3 (op=11)

op

CALL format disp30

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 1

SETHI Format imm22

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rd

disp220 cond

0 0

0 0Branch Format

op2

op2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

1

Memory Formats
1

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

Arithmetic
Formats

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

0

0

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

i

PSR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

z v cn

Figure 5-2 Instruction formats and PSR format for the ARC.

160

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

next, which is

000000

 for

ld

. The

rs1

 field identifies a register that is added to
either the

simm13

 field or the register indicated in the

rs2

 field, which when
added together identify an address for the source operand. For this case, label

x

appears five words after the first instruction, which is at location 2048. Since
each word is composed of four bytes, the address of

x

 is 5

×

 4 = 20 bytes after the
beginning of the program. The address of

x

 is then 2048 + 20 = 2068 which is
represented by the bit pattern 0100000010100. This pattern fits into the signed
13-bit

simm13

 field, and so we can use

%r0

 in

rs1

.

The first line is thus assembled into the bit pattern shown below:

The next instruction is similar in form, and the corresponding bit pattern is:

The assembly process continues until all eight lines are assembled, as shown
below:

ld [x], %r1 1100 0010 0000 0000 0010 1000 0001 0100
ld [y], %r2 1100 0100 0000 0000 0010 1000 0001 1000
addcc %r1,%r2,%r3 1000 0110 1000 0000 0100 0000 0000 0010
st %r3, [z] 1100 0110 0010 0000 0010 1000 0001 1100
jmpl %r15+4, %r0 1000 0001 1100 0011 1110 0000 0000 0100
15 0000 0000 0000 0000 0000 0000 0000 1111
9 0000 0000 0000 0000 0000 0000 0000 1001
0 0000 0000 0000 0000 0000 0000 0000 0000

The need for two-pass assemblers

As a general approach, the assembly process is carried out by reading assembly
language statements sequentially, from first to last, and generating machine code
for each statement. As mentioned earlier, a difficulty with this approach is caused
by forward referencing.

Consider the program fragment shown in Figure 5-3. When the assembler sees
the

call

 statement, it does not yet know the location of

sub_r

 since the

11 00001 000000 00000 1 0100000010100

op rd op3 rs1 i simm13

11 00010 000000 00000 1 0100000011000

op rd op3 rs1 i simm13

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

161

sub_r

 label has not yet been seen. A solution to this problem is to mark the ref-
erence as unresolved, and then go back and fill in the unresolved reference when

sub_r

 is defined later in the program. This is the way that a single-pass assem-
bler would operate. An alternative solution is to make an initial pass through the
code collecting labels and recording their positions, and then make a second pass
for the actual translation. This is the way that a two-pass assembler operates.

The Symbol Table

In the first pass of a two-pass assembly process, a

symbol table

 is created. A sym-
bol is either a label or a symbolic name that refers to a value used during the
assembly process, such as for a

.equ

 statement. As an example of how a two-pass
assembler operates, consider assembling the code in Figure 4-14. The symbol
table is generated in the first pass of assembly. Starting from the

.begin

 state-
ment, the first symbol that is seen that is not an instruction, a pseudo-op, a com-
ment, or a literal is

a_start

. An entry is created in the symbol table for

a_start

, which is given the value 3000. The next symbol that is encountered
that has not been seen is

length

. An entry is created in the symbol table for

length

, which is initially assigned no value as shown in Figure 5-4a.

The next symbol that is seen is

address

 which is not assigned a value since it
has not yet been defined. The next symbol that is seen is

loop

, which is assigned
a value of 2060, since the

.org

 statement specifies a starting address of 2048 and
the

loop

 label is three instructions (3

×

 4 = 12 bytes) past the beginning of the
program. The

.org

 statement does not cause any code to be generated, and the
location counter is thus unchanged until the first

ld

 instruction is encountered.
The next symbol that is encountered that is not in the symbol table is

done

,
which is entered into the symbol table without a value since it has not yet
appeared as a label.

 call sub_r

sub_r: st %r1, [w]
.
.
.

.

.

.

.

.

.

! Subroutine is invoked here

! Subroutine is defined here

Figure 5-3 An example of forward referencing.

162

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

If any labels are not defined at the end of the first pass, then an error exists in the
program and the assembler can flag the errors without needing to continue to the
second pass. At this point, the assembler does not yet know that

length

,

address

, and

done

 will be defined later in the program.

The first pass of assembly continues, and the unresolved symbols

length

,

address

, and

done

 are assigned the values 2092, 2096, and 2088, respectively.
The label

a

 is encountered, and is entered into the table with a value of 3000.
The label

done

 appears at location 2088 because there are 10 instructions (40
bytes) between the beginning of the program and

done

. Addresses for the
remaining labels are computed in a similar manner.

After the symbol table is created, the second pass of assembly begins. The pro-
gram is read a second time, starting from the

.begin

 statement, but now object
code is generated. The first statement that is encountered that causes code to be
generated is

ld

 at location 2048. The symbol table shows that the address por-
tion of the

ld

 instruction is (2092)

10

 for the address of

length

, and so one
word of code is generated using the Memory format as shown in Figure 5-5. The
second pass continues in this manner until all of the code is translated. The
assembled program is shown in Figure 5-5. Notice that the displacements for
branch addresses are given in words, rather than in bytes, because the branch
instructions multiply the displacements by four.

As mentioned earlier, for an assembler that supports macros, there must be a
macro expansion phase that takes place prior to the two-pass assembly process.
Macro expansion can also require two passes, in which the first pass records
macro definitions, and the second pass generates assembly language statements.

Symbol Value

length 2092

loop 2060

done 2088

a 3000

(b)

Symbol Value

a_start 3000

(a)

length ––

a_start 3000

address 2096

Figure 5-4 Symbol table for the ARC program shown in Figure 4-14, (a) after symbols a_start and

length are seen; and (b) after completion.

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 163

The second pass of macro expansion can be very involved, however, if recursive
macro definitions are supported. We will explore macro expansion later in the
chapter. A more detailed description of macro expansion can be found in (Dono-
van, 1972).

One final task that the assembler must perform is to provide information about
the starting location for a program. That is, the location that the PC should be
initialized to when the program is loaded into memory prior to running. Most
often the assembler provides for a special reserved label that the programmer can
use to indicate where the program should start execution. In Figure 5-1 the label
“main” is a signal to the assembler that execution should start at that location.

5.2 Linking and Loading
It may be the case that we use one file for the main portion of a program and
another file for a subroutine library. In this scenario, we are forced to refer to
labels in one file from code that exists in another file. A linkage editor, or linker,
is a software program that combines separately assembled programs (called

 .begin

 .org 2048

 a_start .equ 3000

 ld [length],%r1 11000010 00000000 00101000 00101100
 ld [address],%r2 11000100 00000000 00101000 00110000
 andcc %r3,%r0,%r3 10000110 10001000 11000000 00000000

loop: andcc %r1,%r1,%r0 10000000 10001000 01000000 00000001
 be done 00000010 10000000 00000000 00000110
 addcc %r1,-4,%r1 10000010 10000000 01111111 11111100
 addcc %r1,%r2,%r4 10001000 10000000 01000000 00000010
 ld %r4,%r5 11001010 00000001 00000000 00000000

 addcc %r3,%r5,%r3 10000110 10000000 11000000 00000101
 ba loop 00010000 10111111 11111111 11111011

done: jmpl %r15+4,%r0 10000001 11000011 11100000 00000100
length: 20 00000000 00000000 00000000 00010100

 .org a_start

a: 25 00000000 00000000 00000000 00011001
 -10 11111111 11111111 11111111 11110110
 33 00000000 00000000 00000000 00100001
 -5 11111111 11111111 11111111 11111011

Object codeInstructionLocation
counter

2048

2052

2056

2060

2064

2068

2072

2076

2080

2084

2088

3004

3000

3008

3012

3016

2092

 .end

 7 00000000 00000000 00000000 00000111

address: a_start 00000000 00000000 00001011 101110002096

Figure 5-5 Output from the second pass of the assembler for the ARC program shown in Figure

4-14.

164 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

object modules) into a single program, which is called a load module. The
linker resolves any references in the symbol table of each object module that are
made to symbols defined in the other object modules. The load module can then
be loaded into memory by a loader, which may also need to modify addresses if
the program is loaded at a location that differs from the loading origin used by
the linker.

5.2.1 LINKING

A linker needs to distinguish local symbol names (used within a single source
module) from global symbol names (used in more than one module). This can be
accomplished by making use of the .global and .extern pseudo-ops. The
.global pseudo-op instructs the assembler to mark a symbol as being available
to other object modules during the linking phase. The .extern pseudo-op
identifies a label that is used in one module but is defined in another. A
.global is thus used in the module where a symbol is defined (such as where a
subroutine is located) and a .extern is used in every other module that refers
to it. Note that only address labels can be global or external: it would be
meaningless to mark a .equ symbol as global or external, since .equ is a
pseudo-op that is used during the assembly process only, and the assembly
process is completed by the time that the linking process begins.

All labels referred to in one program by another, such as subroutine names,
should have a line of the form shown below in the source module:

.global symbol1, symbol2, ...

All other labels are local, which means the same label can be used in more than
one source module without risking confusion since local labels are not used after
the assembly process finishes. A module that refers to global symbols should
declare those symbols using the form:

.extern symbol1, symbol2, ...

As an example of how .global and .extern are used, consider the two assem-
bly code source modules shown in Figure 5-6. Each module is separately assem-
bled into an object module, each with its own symbol table as shown in Figure
5-7. The symbol tables now have an additional field that indicates if a symbol is
global or external. Program main begins at location 2048, and each instruction
is four bytes long, so x and y are at locations 2064 and 2068, respectively. The

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 165

symbol sub is marked as external as a result of the .extern pseudo-op.

Unfortunately, subroutine sub also has a starting address of 2048. If the two
modules are assembled separately, then there is no way for an assembler to know
about the conflicting starting addresses during the assembly phase. In order to
resolve this problem, the assembler marks symbols that may need to move as a
result of changing the loading address for the module as relocatable, as shown in
the Relocatable fields of the symbol tables shown in Figure 5-7. The idea is that a
program that is assembled at a starting address of 2048 can be loaded at address
3000 instead, for instance, as long as all references to relocatable addresses within
the program are increased by 3000 – 2048 = 952. Relocation is performed by the
linker so that relocatable addresses are changed by the same amount that the
loading origin is changed, but an absolute address (such as the highest possible
stack address, which is 231 – 4 for 32-bit words) stays the same regardless of the
loading origin. The linker now has two jobs:

(1) Modify addresses affected by relocation.

! Main program

.begin

.org 2048

.extern sub
ld [x], %r2
ld
call

[y], %r3
sub

! Subroutine library

.begin

.org 2048

.global sub
orncc %r3, %r0, %r3

jmpl %r15 + 4, %r0jmpl %r15 + 4, %r0
105
 92

main:

.end

x:
y:

sub:

.end

.equ 1ONE

addcc %r3, ONE, %r3

Figure 5-6 A program calls a subroutine that subtracts two integers.

Symbol Value

sub –

main 2048

x 2064

y 2068

Global/
External

Reloc-
atable

No

No

–

Yes

Yes

Yes

No

External

Main Program

Symbol Value

ONE 1

Global/
External

Reloc-
atable

NoNo

Subroutine Library

sub 2048 YesGlobal

Figure 5-7 Symbol tables for the assembly code source modules shown in Figure 5-6.

166 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

(2) Supply addresses for .extern symbols.

The assembler is responsible for determining which labels are relocatable when it
builds the symbol table. It has no meaning to call an external label relocatable,
since the label is defined in another module, so sub has no relocatable entry in
the symbol table in Figure 5-7 for program main, but it is marked as relocatable
in the subroutine library. The assembler must also identify code in the object
module that needs to be modified as a result of relocation. The linker then has all
of the information it needs to relocate a module.

5.2.2 LOADING

The loader is a software program that places the load module into main mem-
ory. The loader sets the stack pointer %sp to its initial value and starts the execu-
tion of the load module at the starting address specified by the assembler. If there
is only one load module that will execute at any time, then this model will work
well. If more than one program is loaded at a time, then the different modules
may overlap in memory if the starting addresses used by the linker are not far
enough apart. In order to resolve this problem, a loader can add an offset to all of
the relocatable code in a module so that an overlap does not occur. This type of
loader does not simply repeat the job of the linker: the linker has to combine sev-
eral object modules into a single load module, whereas the loader simply modi-
fies relocatable addresses within a single load module.

It takes time for a loader to modify all of the references to relocatable addresses. A
faster method is to designate a base register, which is added into every memory
reference. Consider the line of code shown below:

ld [x], %r1

This line causes the contents of location x to be copied into %r1 at run time. Let
us assume that x is assigned to memory location 2304. There is one source ([x])
and one destination (%r1), but there is room for two sources in the Memory for-
mat for ld as shown below:

11 00001 000000 _____ 1 0100100000000

op rd op3 rs1 i simm13

(Memory
format)

(Dest-
ination)

(ld)

(Immediate)

(Source 2: address of
x = 2304)

(Source 1)

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 167

We can fill in rs1 with the pattern 00000, since %r0 always contains zero. If
we designate a base register, say %r13, then the rs1 field of every ld and st
instruction (which are the only instructions that access memory) will have the bit
pattern 01101. The source assembly line would then look like:

ld %r13, [x], %r1

Now, since the base register %r13 is added to the address of every memory refer-
ence, a relocating loader only needs to change the base register in order to relo-
cate an entire load module, rather than changing all of the references that are
made to relocatable symbols. Note that we have only used the two-operand form
of ld up to this point, but in its generic form, the first two operands of an ld
instruction determine the memory location, and the third address identifies the
destination register. For st, the first operand is the source register and the
remaining two operands determine the memory location.

A PROGRAMMING EXAMPLE

Consider the problem of adding two 64-bit numbers using the ARC assembly
language. We can store the 64-bit numbers in successive words in memory and
then separately add the low and high order words. If a carry is generated from
adding the low order words, then the carry is added into the high order word of
the result.

Figure 5-8 shows one possible coding. The 64-bit operands A and B are stored in
memory in a high endian format, in which the most significant 32 bits are stored
in lower memory addresses than the least significant 32 bits. The program begins
by loading the high and low order words of A into %r1 and %r2, respectively,
and then loading the high and low order words of B into %r3 and %r4, respec-
tively. Subroutine add_64 is called, which adds A and B and places the high
order word of the result in %r5 and the low order word of the result in %r6. The
64-bit result is then stored in C, and the program returns.

Subroutine add_64 starts by adding the low order words. If a carry is not gener-
ated, then the high order words are added and the subroutine finishes. If a carry
is generated from adding the low order words, then it must be added into the
high order word of the result. If a carry is not generated when the high order
words are added, then the carry from the low order word of the result is simply
added into the high order word of the result and the subroutine finishes. If, how-

168 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

ever, a carry is generated when the high order words are added, then when the
carry from the low order word is added into the high order word, the final state
of the condition codes will show that there is no carry out of the high order
word, which is incorrect. The condition code for the carry is restored by placing
a large number in %r7 and then adding it to itself. The condition codes for n, z,
and v may not have correct values at this point, however. A complete solution is
not detailed here, but in short, the remaining condition codes can be set to their

! %r5 – Most significant 32 bits of C

 .begin ! Start assembling

 .org 2048 ! Start program at 2048

 ld [B+4], %r4 ! Get low word of B

 st %r5, [C] ! Store high word of C

 st %r6, [C+4] ! Store low word of C

! %r4 – Least significant 32 bits of B

! %r3 – Most significant 32 bits of B

! %r2 – Least significant 32 bits of A

! Register usage: %r1 – Most significant 32 bits of A

! Perform a 64-bit addition: C ← A + B

 call add_64 ! Perform 64-bit addition

 ld [B], %r3 ! Get high word of B

! %r6 – Least significant 32 bits of C

 ld [A+4], %r2 ! Get low word of A

main: ld [A], %r1 ! Get high word of A

! %r7 – Used for restoring carry bit

 addcc %r1, %r3, %r5 ! Add high order words

lo_carry: addcc %r1, %r3, %r5 ! Add high order words

 bcs hi_carry ! Branch if carry set

 jmpl %r15 + 4, %r0 ! Return to calling routine

 bcs lo_carry ! Branch if carry set

add_64: addcc %r2, %r4, %r6 ! Add low order words

.

.

.

 sethi #3FFFFF, %r7 ! Set up %r7 for carry

 jmpl %r15 + 4, %r0 ! Return to calling routine

A: 0 ! High 32 bits of 25

 addcc %r7, %r7, %r0 ! Generate a carry

 jmpl %r15, 4, %r0 ! Return to calling routine

 addcc %r5, 1, %r5 ! Add in carry

 .end ! Stop assembling

 25 ! Low 32 bits of 25

B: #FFFFFFFF ! High 32 bits of -1

 #FFFFFFFF ! Low 32 bits of -1

C: 0 ! High 32 bits of result

 0 ! Low 32 bits of result

hi_carry: addcc %r5, 1, %r5 ! Add in carry

 .org 3072 ! Start add_64 at 3072

Figure 5-8 An ARC program adds two 64-bit integers.

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 169

proper values by repeating the addcc just prior to the %r7 operation, taking
into account the fact that the c condition code must still be preserved. ■

5.3 Macros
If a stack based calling convention is used, then a number of registers may fre-
quently need to be pushed and popped from the stack during calls and returns.
In order to push ARC register %r15 onto the stack, we need to first decrement
the stack pointer (which is in %r14) and then copy %r15 to the memory loca-
tion pointed to by %r14 as shown in the code below:

addcc %r14, -4, %r14 ! Decrement stack pointer
st %r15, %r14 ! Push %r15 onto stack

A more compact notation for accomplishing this might be:

push %r15 ! Push %r15 onto stack

The compact form assigns a new label (push) to the sequence of statements that
actually carry out the command. The push label is referred to as a macro, and
the process of translating a macro into its assembly language equivalent is
referred to as macro expansion.

A macro can be created through the use of a macro definition, as shown for
push in Figure 5-9. The macro begins with a .macro pseudo-op, and termi-

nates with a .endmacro pseudo-op. On the .macro line, the first symbol is the
name of the macro (push here), and the remaining symbols are command line
arguments that are used within the macro. There is only one argument for
macro push, which is arg1. This corresponds to %r15 in the statement “push
%r15,” or to %r1 in the statement “push %r1,” etc. The argument (%r15 or
%r1) for each case is said to be “bound” to arg1 during the assembly process.

Additional formal parameters can be used, separated by commas as in:

! Macro definition for 'push'
.macro push arg1

st arg1, %r14 ! Push arg1 onto stack
addcc %r14, -4, %r14 ! Decrement stack pointer

! End macro definition.endmacro

! Start macro definition

Figure 5-9 A macro definition for push.

170 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

.macro name arg1, arg2, arg3, ...

and the macro is then invoked with the same number of actual parameters:

name %r1, %r2, %r3, ...

The body of the macro follows the .macro pseudo-op. Any commands can fol-
low, including other macros, or even calls to the same macro, which allows for a
recursive expansion at assembly time. The parameters that appear in the .macro
line can replace any text within the macro body, and so they can be used for
labels, instructions, or operands.

It should be noted that during macro expansion formal parameters are replaced
by actual parameters using a simple textual substitution. Thus one can invoke the
push macro with either memory or register arguments:

push %r1

or

push foo

Obviously the programmer needs to be aware of this feature of macro expansion
when the macro is defined, lest the expanded macro contain illegal statements.

Additional pseudo-ops are needed for recursive macro expansion. The .if and
.endif pseudo-ops open and close a conditional assembly section, respectively.
If the argument to .if is true (at macro expansion time) then the code that fol-
lows, up to the corresponding .endif, is assembled. If the argument to .if is
false, then the code between .if and .endif is ignored by the assembler. The
conditional operator for the .if pseudo-op can be any member of the set {<, =,
>, ≥, ≠, or ≤}.

Figure 5-10 shows a recursive macro definition and its expansion during the
assembly process. The argument X is tested in the .if line. If X is greater than 1,
then the macro is called again, but with the argument X – 1. If the macro
recurs_add is invoked with an argument of 3, then three lines of code are gen-
erated as shown in the bottom of the figure. The first time that recurs_add is
invoked, X has a value of 3. The macro is invoked again with X = 2 and X = 1,
at which point the first addcc statement is generated. The second and third

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 171

addcc statements are then generated as the recursion unwinds.

Macro expansion is normally performed by a macro preprocessor before the
program is assembled. The macro expansion process may be invisible to a pro-
grammer, however, since it may be invoked by the assembler itself.

5.4 Case Study: Extensions to the Instruction Set – The Intel MMX™
and Motorola AltiVec™ SIMD instructions.
As integrated circuit technology provides ever increasing capacity within the pro-
cessor, processor vendors search for new ways to use that capacity. One way that
both Intel and Motorola capitalized on the additional capacity was to extend
their ISAs with new registers and instructions that are specialized for processing
streams or blocks of data. Intel provides the MMX extension to their Pentium
processors and Motorola provides the AltiVec extension to their PowerPC pro-
cessors. In this section we will discuss why the extensions are useful, and how the
two companies implemented them.

5.4.1 BACKGROUND

The processing of graphics, audio, and communications streams requires that the
same repetitive operations be performed on large blocks of data. For example a
graphic image may be several megabytes in size, with repetitive operations
required on the entire image for filtering, image enhancement, or other process-
ing. So-called streaming audio (audio that is transmitted over a network in real
time) may require continuous operation on the stream as it arrives. Likewise 3-D
image generation, virtual reality environments, and even computer games require

! A recursive macro definition
recurs_add X

recurs_add X – 1 ! Recursive call
.if X > 1 ! Assemble code if X > 0

! End .if construct.endif

! Start macro definition

addcc %r1, %rX, %r1 ! Add argument into %r1
.endmacro ! End macro definition

recurs_add 3 ! Invoke the macro

Expands to:

addcc %r1, %r1, %r1
addcc %r1, %r2, %r1
addcc %r1, %r3, %r1

.macro

Figure 5-10 A recursive macro definition, and the corresponding macro expansion.

172 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

extraordinary amounts of processing power. In the past the solution adopted by
many computer system manufacturers was to include special purpose processors
explicitly for handling these kinds of operations.

Although Intel and Motorola took slightly different approaches, the results are
quite similar. Both instruction sets were extended with SIMD (Single Instruction
stream / Multiple Data stream) instructions and data types. The SIMD approach
applies the same instruction to a vector of data items simultaneously. The term
“vector” refers to a collection of data items, usually bytes or words.

Vector processors and processor extensions are by no means a new concept. The
earliest CRAY and IBM 370 series computers had vector operations or exten-
sions. In fact these machines had much more powerful vector processing capabil-
ities than these first microprocessor-based offerings from Intel and Motorola.
Nevertheless, the Intel and Motorola extensions provide a considerable speedup
in the localized, recurring operations for which they were designed. These exten-
sions are covered in more detail farther down, but Figure 5-11 gives a flavor for

the process. The figure shows the Intel PADDB (Packed Add Bytes) instruction,
which performs 8-bit addition on the vector of eight bytes in register MM0 with
the vector of eight bytes in register MM1, storing the results in register MM0.

5.4.2 THE BASE ARCHITECTURES

Before we cover the SIMD extensions to the two processors, we will take a look
at the base architectures of the two machines. Surprisingly, the two processors
could hardly be more different in their ISAs.

The Intel Pentium

Aside from special-purpose registers that are used in operating system-related
matters, the Pentium ISA contains eight 32-bit integer registers, with each regis-
ter having its own “personality.” For example, the Pentium ISA contains a single
accumulator (EAX) which holds arithmetic operands and results. The processor
also includes eight 80-bit floating-point registers, which, as we will see, also serve

mm0

mm1

mm0

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

11111111 00000000 01101001 10111111 00101010 01101010 10101111 10111101

11111110 11111111 00001111 10101010 11111111 00010101 11010101 00101010

11111101 11111111 01111000 01101001 00101001 01111111 10000100 11100111

Figure 5-11 The vector addition of eight bytes by the Intel PADDB mm0, mm1 instruction.

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 173

as vector registers for the MMX instructions. The Pentium instruction set would
be characterized as CISC (Complicated Instruction Set Computer). We will dis-
cuss CISC vs. RISC (Reduced Instruction Set Computer) in more detail in
Chapter 9, but for now, suffice it to say that the Pentium instructions vary in size
from a single byte to 9 bytes in length, and many Pentium instructions accom-
plish very complicated actions. The Pentium has many addressing modes, and
most of its arithmetic instructions allow one operand or the result to be in either
memory or a register. Much of the Intel ISA was shaped by the decision to make
it binary-compatible with the earliest member of the family, the 8086/8088,
introduced in 1978. (The 8086 ISA was itself shaped by Intel’s decision to make
it assembly-language compatible with the venerable 8-bit 8080, introduced in
1973.)

The Motorola PowerPC

The PowerPC, in contrast, was developed by a consortium of IBM, Motorola
and Apple, “from the ground up,” forsaking backward compatibility for the abil-
ity to incorporate the latest in RISC technology. The result was an ISA with
fewer, simpler instructions, all instructions exactly one 32-bit word wide, 32
32-bit general purpose integer registers and 32 64-bit floating point registers.
The ISA employs the “load/store” approach to memory access: memory operands
have to be loaded into registers by load and store instructions before they can be
used. All other instructions must have their operands and results in registers.

As we shall see below, the primary influence that the core ISAs described above
have on the vector operations is in the way they access memory.

5.4.3 VECTOR REGISTERS

Both architectures provide an additional set of dedicated registers in which vector
operands and results are stored. Figure 5-12 shows the vector register sets for the
two processors. Intel, perhaps for reasons of space, “aliases” their floating point
registers as MMX registers. This means that the Pentium’s 8 64-bit floating-point
registers also do double-duty as MMX registers. This approach has the disadvan-
tage that the registers can be used for only one kind of operation at a time. The
register set must be “flushed” with a special instruction, EMMS (Empty MMX
State) after executing MMX instructions and before executing floating-point
instructions.

Motorola, perhaps because their PowerPC processor occupies less silicon, imple-

174 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

mented 32 128-bit vector registers as a new set, separate and distinct from their
floating-point registers.

Vector operands

Both Intel and Motorola’s vector operations can operate on 8- 16- 32- 64- and,
in Motorola’s case, 128-bit integers. Unlike Intel, which supports only integer
vectors, Motorola also supports 32-bit floating point numbers and operations.

Both Intel and Motorola’s vector registers can be filled, or packed, with 8- 16-
32- 64- and in the Motorola case, 128-bit data values. For byte operands, this
results in 8- or 16-way parallelism, as 8 or 16 bytes are operated on simulta-
neously. This is how the SIMD nature of the vector operation is expressed: the
same operation is performed on all the objects in a given vector register.

Loading to and storing from the vector registers

Intel continues their CISC approach in the way they load operands into their
vector registers. There are two instructions for loading and storing values to and
from the vector registers, MOVD and MOVQ, which move 32-bit doublewords
and 64-bit quadwords, respectively. (The Intel word is 16-bits in size.) Syntax is:

MOVD mm, mm/m32 ;move doubleword to a vector reg.

MOVD mm/m32, mm ;move doubleword from a vector reg.

MOVQ mm, mm/m64 ;move quadword to a vector reg.

Intel MMX Registers

63 0

MM7

•

•

MM0

Motorola AltiVec Registers

127 0

VR31

VR30

•

•

•

•

VR1

VR0

Figure 5-12 Intel and Motorola vector registers.

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 175

MOVQ mm/m64, mm ;move quadword from a vector reg.

• mm stands for one of the 8 MM vector registers,

• mm/mm32 stands for either one of the integer registers, an MM register,
or a memory location, and

• mm/m64 stands for either an MM register or a memory location.

In addition, in the Intel vector arithmetic operations one of the operands can be
in memory, as we will see below.

Motorola likewise remained true to their professed RISC philosophy in their
load and store operations. The only way to access an operand in memory is
through the vector load and store operations. There is no way to move an oper-
and between any of the other internal registers and the vector registers. All oper-
ands must be loaded from memory and stored to memory. Typical load opcodes
are:

lvebx vD, rA|0, rB ;load byte to vector reg vD, indexed.

lvehx vD, rA|0, rB ;move halfword to vector reg vD indexed.

lvewx vD, rA|0, rB ;move word to vector reg vD indexed.

lvx vD, rA|0, rB ;move doubleword to vector reg vD.

vD stands for one of the 32 vector registers. The memory address of the operand
is computed from (rA|0 + rB), where rA and rB represent any two of the integer
registers r0-r32, and the “|0” symbol means that the value zero may be substi-
tuted for rA. The byte, half word, word, or doubleword is fetched from that
address. (PowerPC words are 32 bits in size.)

The term “indexed” in the list above refers to the location where the byte, half-
word or word will be stored in the vector register. The least significant bits of the
memory address specify the index into the vector register. For example, LSB’s
011 would specify that the byte should be loaded into the third byte of the regis-
ter. Other bytes in the vector register are undefined.

The store operations work exactly like the load instructions above except that the
value from one of the vector registers is stored in memory.

176 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

5.4.4 VECTOR ARITHMETIC OPERATIONS

These operations form the heart of the SIMD process. We shall see that there is a
new form of arithmetic, saturation arithmetic, and several new and exotic opera-
tions.

Saturation arithmetic

Both vector processors provide the option of doing saturation arithmetic
instead of the more familiar modulo wraparound kind that we studied in Chap-
ters 2 and 3. Saturation arithmetic works exactly like two’s complement arith-
metic as long as the results do not overflow or underflow. When results do
overflow or underflow, in saturation arithmetic the result is held at the maximum
or minimum allowable value rather than being allowed to wrap around. For
example 2’s complement bytes are saturated on the high end at +127 and on the
low end at -128. Unsigned bytes are saturated at 255 and 0. If an arithmetic
result overflows or underflows these bounds the result is clipped, or “saturated” at
the boundary.

The reason for saturation arithmetic can be seen in the processing of color infor-
mation. If color is represented by a byte in which 0 represents black and 255 rep-
resents white, then saturation allows the color to remain pure black or pure white
after an operation rather than inverting upon overflow or underflow.

Instruction formats

As the two architectures have different approaches to addressing modes, so their
SIMD instruction formats differ. Intel continues their process of using
two-address instructions, where the one source operand can be in an MM regis-
ter, an integer register, or memory, and the second operand and destination is an
MM register:

OP mm, mm32or64 ;mm ← mm OP mm/mm32/64

Motorola requires all operands to be in vector registers, and it employs
three-operand instructions:

OP Vd, Va, Vb [,Vc] ; Vd ← Va OP Vb [OP Vc]

This approach has the advantage that no vector register need be overwritten. In

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 177

addition, some instructions can employ a third operand, Vc.

Arithmetic operations

Perhaps not too surprisingly, the MMX and AltiVec instructions are quite simi-
lar. Both provide operations on 8- 16- 32- 64- and in the AltiVec case, 128-bit
operands. In Table 5.1 below we see examples of the variety of operations pro-

vided by the two technologies. The primary driving forces for providing these
particular operations is a combination of wanting to provide potential users of
the technology with operations that they will find needed and useful in their par-
ticular application, amount of silicon available for the extension, and the base
ISA.

Operation Operands (bits) Arithmetic

Integer Add, Subtract, signed and unsigned(B) 8, 16, 32, 64, 128 Modulo, Saturated

Integer Add, Subrtract, store carry-out in vector
reg.(M)

32 Modulo

Integer Multiply, store high- or low order half (I) 16←16×16 —

Integer multipy add: Vd = Va *Vb + Vc (B) 16←8×8
32←16×16

Modulo, Saturated

Shift Left, Right, Arithmetic Right(B) 8, 16, 32, 64(I) —

Rotate Left, Right (M) 8, 16, 32 —

AND, AND NOT, OR, NOR, XOR(B) 64(I), 128(M) —

Integer Multiply every other operand, store entire
result, signed and unsigned(M)

16←8×8
32←16×16

Modulo, Saturated

Maximum, minimum. Vd←Max,Min(Va, Vb) (M) 8, 16, 32 Signed, Unsigned

Vector sum across word. Add objects in vector, add
this sum to object in second vector, place result in
third vector register.(M)

Various Modulo, Saturated

Vector floating point operations, add, subtract, mul-
tiply-add, etc. (M)

32 IEEE Floating
Point

Table5.1MMX and AltiVec arithmetic instructions.

178 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

5.4.5 VECTOR COMPARE OPERATIONS

The ordinary paradigm for conditional operations, compare and branch on con-
dition, will not work for vector operations, because each operand undergoing the
comparison can yield different results. For example, comparing two word vectors
for equality could yield TRUE, FALSE, FALSE, TRUE. There is no good way to
employ branches to select different code blocks depending upon the truth or fal-
sity of the comparisons. As a result, vector comparisons in both MMX and
AltiVec technologies result in the explicit generation of TRUE or FALSE. In
both cases, TRUE is represented by all 1’s, and FALSE by all 0’s in the destina-
tion operand. For example byte comparisons yield FFH or 00H, 16-bit compari-
sons yield FFFFH or 0000H, and so on for other operands. These values, all 1’s
or all 0’s, can then be used as masks to update values.

Example: comparing two byte vectors for equality

Consider comparing two MMX byte vectors for equality. Figure 5-13 shows the

results of the comparison: strings of 1’s where the comparison succeeded, and 0’s
where it failed. This comparison can be used in subsequent operations. Consider
the high-level language conditional statement:

if (mm0 == mm1) mm2 = mm2 else mm2 = 0;

The comparison in Figure 5-13 above yields the mask that can be used to control
the byte-wise assignment. Register mm2 is ANDed with the mask in mm0 and
the result stored in mm2, as shown in Figure 5-14. By using various combina-

mm0

mm1

mm0

==

↓

==

↓

==

↓

==

↓

==

↓

==

↓

==

↓

==

(T) (F) (T) (T) (F) (T) (F) (F)

↓

11111111 00000000 00000000 10101010 00101010 01101010 10101111 10111101

11111111 11111111 00000000 10101010 00101011 01101010 11010101 00101010

11111111 00000000 11111111 11111111 00000000 11111111 00000000 00000000

Figure 5-13 Comparing two MMX byte vectors for equality.

mm2

mm2

mm0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

10110011 10001101 01100110 10101010 00101011 01101010 11010101 00101010

10110011 00000000 01100110 10101010 00000000 01101010 00000000 00000000

11111111 00000000 11111111 11111111 00000000 11111111 00000000 00000000
AND

Figure 5-14 Conditional assignment of an MMX byte vector.

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 179

tions of comparison operations and masks, a full range of conditional operations
can be implemented.

Vector permutation operations

The AltiVec ISA also includes a useful instruction that allows the contents of one
vector to be permuted, or rearranged, in an arbitrary fashion, and the permuted
result stored in another vector register.

5.4.6 SUMMARY

The SIMD extensions to the Pentium and PowerPC processors provide powerful
operations that can be used for block data processing. At the present time there
are no common compiler extensions for these instructions. As a result, program-
mers that want to use these extensions must be willing to program in assembly
language.

An additional problem is that not all Pentium or PowerPC processors contain the
extensions, only specialized versions. While the programmer can test for the pres-
ence of the extensions, in their absence the programmer must write a “manual”
version of the algorithm. This means providing two sets of code, one that utilizes
the extensions, and one that utilizes the base ISA. Whether these extensions will
become popular with users has yet to be determined.

■ SUMMARY

A high level programming language like C or Pascal can be used to write programs
while treating the low-level architecture of a computer as an abstraction. An
assembly language program, on the other hand, takes a form that is very depen-
dent on the underlying architecture. The instruction set architecture (ISA) is made
visible to the programmer, who is responsible for handling register usage and sub-
routine linkage. Some of the complexity of assembly language programming is
managed through the use of macros, which differ from subroutines or functions, in
that macros generate in-line code at assembly time, whereas subroutines are exe-
cuted at run time.

A linker combines separately assembled modules into a single load module, which
typically involves relocating code. A loader places the load module in memory and

180 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

starts the execution of the program. The loader may also need to perform reloca-
tion if two or more load modules overlap in memory.

Before compilers were developed, programs were written directly in assembly lan-
guage. Nowadays, assembly language is not normally used directly since compilers
for high-level languages are so prevalent and also produce efficient code, but
assembly language is still important for understanding aspects of computer archi-
tecture, such as how to link programs that are compiled for different calling con-
ventions, and for exploiting extensions to architectures such as MMX and AltiVec.

■ FURTHER READING
There are a great many references on assembly language programming. (Dono-
van, 1972) is a classic reference on assemblers, linkers, and loaders. (Gill et al.,
1987) covers the 68000. (Goodman and Miller, 1993) serves as a good instruc-
tional text, with examples taken from the MIPS architecture. The appendix in
(Patterson and Hennessy, 1998) also covers the MIPS architecture. (SPARC,
1992) deals specifically with the definition of the SPARC, and SPARC assembly
language.

Donovan, J. J., Systems Programming, McGraw-Hill, (1972).

Gill, A., E. Corwin, and A. Logar, Assembly Language Programming for the 68000,
Prentice-Hall, Englewood Cliffs, New Jersey, (1987).

Goodman, J. and K. Miller, A Programmer’s View of Computer Architecture,
Sounders College Publishing, (1993).

Patterson, D. A. and J. L. Hennessy, Computer Organization and Design: The
Hardware / Software Interface, 2/e, Morgan Kaufmann Publishers, San Mateo,
California, (1998).

SPARC International, Inc., The SPARC Architecture Manual: Version 8, Prentice
Hall, Englewood Cliffs, New Jersey, (1992).

■ PROBLEMS
5.1 Create a symbol table for the ARC segment shown below using a form

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 181

similar to Figure 5-7. Use “U” for any symbols that are undefined.

x .equ 4000
 .org 2048
 ba main
 .org 2072

main: sethi x, %r2
srl %r2, 10, %r2

lab_4: st %r2, [k]
addcc %r1, -1, %r1

foo: st %r1, [k]
andcc %r1, %r1, %r0
beq lab_5
jmpl %r15 + 4, %r0

cons: .dwb 3

5.2 Translate the following ARC code into object code. Assume that x is at
location (4096)10.

k .equ 1024
.
.
.

addcc %r4 + k, %r4
ld %r14, %r5
addcc %r14, -1, %r14
st %r5, [x]

.

.

.

5.3 Translate subroutine add_64 shown in Figure 5-8, including variables A,
B, and C, into object code.

5.4 A disassembler is a software program that reads an object module and
recreates the source assembly language module. Given the object code shown
below, disassemble the code into ARC assembly language statements. Since
there is not enough information in the object code to determine symbol
names, choose symbols as you need them from the alphabet, consecutively,
from ‘a’ to ‘z.’

182 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

10000010 10000000 01100000 00000001
10000000 10010001 01000000 00000110
00000010 10000000 00000000 00000011
10001101 00110001 10100000 00001010
00010000 10111111 11111111 11111100
10000001 11000011 11100000 00000100

5.5 Given two macros push and pop as defined below, unnecessary instruc-
tions can be inserted into a program if a push immediately follows a pop.
Expand the macro definitions shown below and identify the unnecessary
instructions.

.begin

.macro push arg1
addcc %r14, -4, %r14
st arg1, %r14
.endmacro
.macro pop arg1
ld %r14, arg1
addcc %r14, 4, %r14
.endmacro

! Start of program
.org 2048
pop %r1
push %r2

.

.

.
.end

5.6 Write a macro called return that performs the function of the jmpl
statement as it is used in Figure 5-5.

5.7 In Figure 4-16, the operand x for sethi is filled in by the assembler, but
the statement will not work as intended if x ≥ 222 because there are only 22
bits in the imm22 field of the sethi format. In order to place an arbitrary
32-bit address into %r5 at run time, we can use sethi for the upper 22 bits,
and then use addcc for the lower 10 bits. For this we add two new
pseudo-ops: .high22 and .low10, which construct the bit patterns for the
high 22 bits and the low 10 bits of the address, respectively. The construct:

sethi .high22(#FFFFFFFF), %r1

CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE 183

expands to:

sethi #3FFFFF, %r1

and the construct:

addcc %r1, .low10(#FFFFFFFF), %r1

expands to:

addcc %r1, #3FF, %r1.

Rewrite the calling routine in Figure 4-16 using .high22 and .low10 so
that it works correctly regardless of where x is placed in memory.

5.8 Assume that you have the subroutine add_64 shown in Figure 5-8 avail-
able to you. Write an ARC routine called add_128 that adds two 64-bit
numbers, making use of add_64. The two 128-bit operands are stored in
memory locations that begin at x and y, and the result is stored in the mem-
ory location that begins at z.

5.9 Write a macro called subcc that has a usage similar to andcc, except that
it subtracts its second source operand from the first.

5.10 Does ordinary, nonrecursive macro expansion happen at assembly time or
at execution time? Does recursive macro expansion happen at assembly time
or at execution time?

5.11 An assembly language programmer proposes to increase the capability of
the push macro defined in Figure 5-9 by providing a second argument, arg2.
The second argument would replace the addcc %r14, -4, %r14 with
addcc arg2, -4, arg2. Explain what the programmer is trying to
accomplish, and what dangers lurk in this approach.

184 CHAPTER 5 WORKING WITH ASSEMBLY LANGUAGE

